Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale

Albertas Žukauskas,1 Mangirdas Malinauskas,1 and Etienne Brasselet2,a)
1Laser Nanophotonics Group, Department of Quantum Electronics, Physics Faculty, Vilnius University, Saulėtekio Ave. 9, LT-10222 Vilnius, Lithuania
2Univ. Bordeaux and CNRS, Laboratoire Ondes et Matière d’Aquitaine, UMR 5798, F-33400 Talence, France

(Received 19 July 2013; accepted 18 October 2013; published online 1 November 2013)

We report on the fabrication and characterization of micro-optical elements with typical size of 100 μm, which enable the production of pseudo-nondiffracting optical vortex beams of arbitrary order. This is made possible from the monolithic integration of spiral phase plates and axicons into helical axicons by direct laser writing using femtosecond laser nanopolymerization. The optical performances of the fabricated three-dimensional singular microstructures are experimentally measured and compared with their expected theoretical behavior, both in intensity and phase. The proposed approach thus represents an attempt to merge the field of singular integrated optics with that of nondiffracting light fields. © 2013 AIP Publishing LLC.

Beam shaping of light using micron scale optical devices remains a contemporary challenge for the development of integrated optics, especially when the generation of optical singularities is considered. In fact, to imprint singular features onto a light beam from an element with typical spatial singularities is considered. In fact, to imprint singular features onto a light beam from an element with typical spatial singularities is considered. In fact, to imprint singular features onto a light beam from an element with typical spatial singularities is considered. In fact, to imprint singular features onto a light beam from an element with typical spatial singularities is considered. In fact, to imprint singular features onto a light beam from an element with typical spatial singularities is considered.
measure the relationship h_2, and 3. In all cases, the monolithic structure is supported by the spiral phase plate that corresponds to $\ell = 1$ for 633 nm wavelength. Note that the different colors used for the spiral phase plate and the axicon merely emphasize the concept of merging two independent optical functionalities in a single monolithic element. (b) SEM image of a fabricated monolithic microstructure with $50 \mu m$ radius, $\ell = 1$ and $x = 15^\circ$. (c) Magnified view of the spiral step of the structure shown in panel (b).

velocity and spiral scanning trajectory with 100 nm voxel overlap. The chosen material is a Zr containing hybrid organic-inorganic photopolymer photosensitized with 0.5% thioxanthene-9-one (Alfa Aesar). Samples were prepared by drop-casting on a glass substrate and pre-baking it for 30 min at 90 °C. After the exposure, photopolymer was immersed into pure 4-methyl-2-pentanone (Sigma Aldrich) developer for 1 h to remove the unexposed material, hence leaving free-standing microstructure on the substrate. Basically, the helical axicon is described by two independent parameters: (i) the step height h of the spiral plate and (ii) the inclination angle α of the axicon, see Fig. 1(a). These two parameters independently control the key features of the generated light field. On the one hand, h is related to the topological charge ℓ of the generated on-axis optical phase singularity by the relationship $\ell = (n - 1)h/\lambda$, where n is the refractive index of the material and λ is the wavelength. On the other hand, α is related to the opening angle θ_0 of the cone which propagate the constitutive plane waves of an ideal nondiffracting Bessel beam following the relationship $\theta_0 = \arcsin[(n - 1)\sin \alpha] - \alpha$ that simplifies to $\theta_0 \approx (n - 1)\alpha$ in the limit of small α.

Two sets of microstructures have been fabricated: (i) $\ell = 1$ with $\alpha = 5^\circ$, 10°, and 15° and (ii) $\alpha = 10^\circ$ with $\ell = 1$, 2, and 3. In all cases, the monolithic structure is supported by three pillars with 30 μm height and 20 μm diameter, fixed to the substrate thus leaving enough space underneath to wash-out the unexposed photopolymer, and whose locations define an equilateral triangle. A scanning electron microscope (SEM) image of a 2$R = 100 \mu m$ diameter structure is shown in Fig. 1(b) in the case $\ell = 1$ and $\alpha = 15^\circ$, which qualitatively confirm the overall quality of the fabricated micro-optical element. In addition, a SEM magnified view of the spiral phase plate step is shown in Fig. 1(c) from which we measure $h_{\text{exp}} \approx 1.29 \mu m$. According to the refractive index determination of the polymerized material at 633 nm wavelength, $n = 1.504$, the measured height differs from the expected value by 40 nm. This corresponds to a $\sim 3/\ell$ % accuracy regarding the value of ℓ. Also, within our experimental fabrication conditions, we obtain a surface roughness of ~ 45 nm. The quality of the surface is therefore better than $\lambda/14$ for the wavelength used for optical characterization. That is to say, the obtained surfaces have a fairly good optical quality when compared with standard commercial macroscopic optical elements.

Optical performances of the fabricated devices are first tested regarding the propagation features of the generated light field. This is done by using a fundamental Gaussian probe beam obtained from a He-Ne laser operating at 633 nm. The probe beam is focused at normal incidence onto the sample with a divergence angle of $\theta_0 \approx 0.02$ rad that leads to a Gaussian beam waist $w_0 \approx 10 \mu m$ in the focal plane, where is placed the microscopic helical axicon. The intensity profiles at a distance z from the midplane of the structure are recorded by means of a microscope objective ($40 \times$, $NA = 0.65$) and a CCD camera.

The dependence of the azimuthally averaged intensity profiles as a function of z is shown in Fig. 2(a) for $\ell = 1$ and $\alpha = 5^\circ$. In this figure, the radial intensity profiles are plotted in units of r_{max} where r_{max} is the radius of the first intensity maximum at $z = z_{\text{max}} = w_0/[[(n - 1)\alpha]$. The distance z_{max} corresponds to the geometrical estimation of the distance over which a Bessel-Gauss beam generated by a Gaussian beam passing through an axicon has a pseudo-nondiffracting behavior provided $z_{\text{max}}/z_0 > 1$, where $z_0 = \pi w_0^2/\lambda$ is the Rayleigh distance of the incident Gaussian beam.

In practice, the positioning of the sample with respect to the probe beam focal plane is not ensured with high accuracy. Therefore, consistency between experiments and simulations is ensured by using the incident Gaussian beam waist

FIG. 1. (a) Left: side view of the proposed monolithic micro-optical generator of pseudo-nondiffracting optical vortex beams of order ℓ that consists of the combination of an axicon with a spiral phase plate made of the same material. Right: optical profilometry images of individual building blocks fabricated on the cover glass: an axicon with $x = 15^\circ$ and a spiral phase plate that corresponds to $\ell = 1$ for 633 nm wavelength. Note that the different colors used for the spiral phase plate and the axicon merely emphasize the concept of merging two independent optical functionalities in a single monolithic element. (b) SEM image of a fabricated monolithic microstructure with $50 \mu m$ radius, $\ell = 1$ and $x = 15^\circ$. (c) Magnified view of the spiral step of the structure shown in panel (b).

FIG. 2. Radial intensity profile as a function of the propagation distance z for $\ell = 1$ and $\alpha = 5^\circ$. (a) Experimental data. (b) Simulations with $w_0 = 16.6 \mu m$. For each z, the radial profiles are normalized to their maximal value.
Figure 3. Radial intensity profile as a function of $z = z_{\text{max}}$ for $\ell = 1$ and $z = 5^\circ$ (a) and (b)), $z = 10^\circ$ (c) and (d)), and $z = 15^\circ$ (e) and (f)), for which $r_{\text{max}} = 3.6, 1.9$, and $1.2 \mu m$, respectively. Azimuthally averaged experimental data (square markers) are compared with simulations (solid curves) on the right column.

This is done by visual inspection of the interferogram with a reference Gaussian beam, as shown in Fig. 4 for $\ell = 1, \ell = 2$, and $\ell = 3$ for $z = 10^\circ$. The characteristic “forked” intensity patterns associated with the $2\ell \pi$ circulation of the optical phase around the beam axis are indeed clearly identified. Interestingly, we also notice an oscillating radial behavior of the field amplitude around zero, which is reminiscent of the Bessel feature of the generated light field. This can be grasped from the panels in the bottom part of Fig. 4 where an abrupt phase shift of π for the field at radial distances that corresponds to null intensity values is easily identified.

Noteworthy, one should keep in mind that the generated high-order Bessel-Gauss beams only behave as pseudo-nondiffracting beams over the typical distance z_{max} if the condition $z_{\text{max}}/z_B > 1$ is satisfied, or equivalently, $\theta_B < \theta_G$. That is to say, when the Bessel nondiffracting features prevail over the Gaussian divergence characteristics. This imposes a constraint on the characteristic angle z of the axicon at given helical axicon radius R. Indeed, from previous practical finding that a complete transformation of a Gaussian beam into a Laguerre-Gaussian like beam by a spiral phase plate typically requires $w_0 \leq R/2$, one gets $\theta_B \leq 2\lambda/(nR)$ that gives $z < 2\lambda/[(n-1)R]$. With present parameters $\lambda \simeq 0.6 \, \mu m$, $n = 1.5$, and $R = 50 \, \mu m$ we find the safe condition $z < 1^\circ$ (obviously, if $w_0 < R/2$, the possible range for z increases). Although this is not the case for the presented structures with $\theta_B > 2.5^\circ$ for the used incident Gaussian beam divergence $\theta_G \sim 1^\circ$, there is no lack of generality since arbitrarily small values of z can formally be achieved using femtosecond laser nanopolymerization.

To conclude, we have shown that femtosecond direct laser writing can be used to realize photopolymerized monolithic singular micro-optical elements for the generation of pseudo-nondiffracting high-order optical vortex beams. Singular beam shaping strategy at the micron scale could find applications in optical trapping and micromanipulation, where the concept of nondiffracting light optical fields has already been found useful.
A.Ž. and M.M. are grateful for this research funding by a grant "MikroSviesa" (No. MIP-12241) from the Research Council of Lithuania. E.B. was supported by EC’s Seventh Framework Programme (LASERLAB-EUROPE, Grant Agreement No. 228334, OPTOBIO).