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Abstract. Rayleigh-Plateau instability is known to impose a stability limit for the length of a liquid bridge
in weightless conditions. This fundamental limit may be exceeded by using a light field to form and
stabilize dielectric fluid bridges (A. Casner, J.P. Delville, Europhys. Lett. 65, 337 (2004)). Using both new
experimental data as well as a new theoretical approach, we show that both the size and the stability of
such light-sustained dielectric bridge can be qualitatively explained. We present a ray optics model that
encompasses the competition between surface tension effects and optical radiation pressure arising from
total internal reflection inside the bridge. A critical power below which a liquid bridge can no longer be
sustained by light is predicted and confirmed experimentally. The observed power dependence of the bridge
diameter also agrees with the proposed stabilization mechanism.

PACS. 47.20.Ma Interfacial instabilities (e.g., Rayleigh-Taylor) – 42.25.Gy Edge and boundary effects;
reflection and refraction – 42.50.Wk Mechanical effects of light on material media, microstructures and
particles – 82.70.Kj Emulsions and suspensions

Introduction

Liquid bridges are free-standing fluid cylinders of finite
volume surrounded by a second fluid and stabilized be-
tween two solid surfaces by surface tension. They play
an important role in many different areas of science going
from crystal growth by the floating zone method [1], to mi-
cro total analysis system applications [2]. However, con-
trol and stabilization of large-aspect-ratio liquid bridges
is very challenging [3]. Beyond a certain aspect ratio
Λ = ℓ/2R, where ℓ is the height and 2R the diameter,
liquid columns are known to break into droplets due to
the Rayleigh-Plateau instability [4]. This behavior, inves-
tigated for more than a century [5] is still under intense re-
search because, up to now, advanced methods used to by-
pass the Rayleigh-Plateau limitation almost failed in sta-
bilizing liquid columns with large aspect ratios. In weight-
less conditions, a cylindrical liquid column becomes unsta-
ble and breaks when its length exceeds its circumference
(i.e. Λ > π); buoyancy even lowers this value of the as-
pect ratio onset. Gravity was then compensated by mag-
netic fields [6]. Further increase of the instability onset
was investigated under axial and radial electric fields for
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both dielectric [7] and conducting [8] liquids. Passive [9]
and active [10] control by acoustic radiation pressure was
also demonstrated. Despite a large amount of efforts, the
largest value reached was Λ = 5 [11]. In a recent work [12],
we experimentally demonstrated that the optical radiation
pressure was able to stabilize liquid bridges well above the
Rayleigh-Plateau onset (a picture was given for Λ = 14).
Aside from this fundamental fluid mechanics aspect, the
method also seems promising in micro-technologies be-
cause laser-sustained liquid columns are tunable in aspect
ratio, adjustable in direction and totally reconfigurable.
Consequently, the range of applications is very wide, go-
ing from micro-optics (i.e. liquid columns behave as soft
optical fibers) to microfluidic pipes, as fluid transfer can be
optically controlled and directed in three dimensions [13].
This investigation nevertheless needed theoretical insights
in order to understand why light beams are able to sta-
bilize liquid columns so easily while classical electric and
acoustic fields are unable to do so. This is the purpose of
the present work.

We study the size and the stability of dielectric fluid
bridges sustained by light and propose a simple geomet-
rical model that grasps the main features of the obser-
vations. The main idea is to balance the competing ra-
dial effects of surface tension, which tends to break the
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Fig. 1. Sketch of the experimental set-up. The TEM00 mode
of a CW argon ion laser operating at 514.5 nm is focused at
the fluid-fluid interface of the phase-separated liquid mixture
whose temperature is regulated above the critical tempera-
ture Tc. The less refractive phase ϕ1 (density ρ1, refractive
index n1) is the denser one. The cell thickness is e = 2 mm and
the working thickness is ℓ = 200 μm, which is calibrated by in-
troducing a glass slab of thickness L = 800 μm at the bottom
of the cell.

bridge through Rayleigh-Plateau instability, and optical
radiation pressure arising from total internal reflection in-
side the bridge that helps to keep the bridge open. We
predict the existence of a threshold power below which
a liquid bridge can no longer be sustained by light, as
is seen in the experiments. The power dependence of the
bridge diameter also agrees with the proposed stabiliza-
tion mechanism.

Experiments and results

The experimental set-up is depicted in Figure 1. It con-
sists of a phase-separated near-critical liquid mixture con-
tained in a thermo-regulated glass cell at temperature T ,
for which a very low surface tension can be obtained.
Details on the preparation of the solution can be found
in [14]. Above the critical temperature Tc ≃ 35 ◦C, two
distinct phases ϕ1 and ϕ2 of different composition coex-
ist. The densities and refractive indices satisfy ρ1 > ρ2 and
n1 < n2, respectively. Therefore the phase ϕ1, of lowest
refractive index, is at the bottom of the cell. In addition,
the phase ϕ2 completely wets the cell walls close to Tc,
forming a wetting layer at the bottom of the cell. A ver-
tical downward TEM00 Gaussian beam from a CW Ar+

laser operating at wavelength λ = 514.5 nm is focused at
normal incidence onto the fluid-fluid interface, along the
z-axis, as shown in Figure 1. The intensity profile at the
unperturbed interface is

I(r) =
2P

πw2
0

exp
(

−2r2/w2
0

)

, (1)

where r is the radial distance from the centerline of the
laser beam, P is the total beam power and w0 is the
beam waist. Since n1 < n2, the raditation pressure exerted
by the laser beam deforms the interface downward [15]

Fig. 2. (a) The maximum height h of the light-induced de-
formation for increasing (filled circles) and decreasing (open
circles) power. The laser power P is normalized by the value
Pjet. Above Pjet the downward deformation transforms discon-
tinuously into a fluid jet (inset). The dashed line indicates the
lower-layer depth ℓ used in the bridge experiment (see Fig. 1).
(b,c) Formation of fluid jet. At t = 0, the laser power is in-
creased to P = 460 mW, a value above Pjet. The beam waist is
w0 = 3.5 μm and T − Tc = 5 K. (b) At t = 1.2 s, the interface
forms a downward deflection. (c) At t = 7.2 s, the interface
has evolved into a liquid jet and the scattering of the resulting
light guiding by the jet edges is visible.

(Fig. 2(a)). When the laser power exceeds a critical value
Pjet, the interface deforms into a fluid jet, with droplets
emitted from the end of the jet (see inset of Fig. 2(a)) [16].

The jet structure results from an opto-hydrodynamic
instability whose proposed mechanism is the destabiliza-
tion of the small-amplitude surface deformation as the
beam experiences total internal reflection at the inflexion
point location, where the local incidence angle of light θinc

at the interface is the largest [16]. Indeed, as n2 > n1, light
incident from phase ϕ2 is totally reflected and directed
toward the deformation tip if θinc > θc = arcsin(n1/n2).
The dynamical scenario of the jetting instability is illus-
trated in Figures 2(b, c) with snapshots at time t = 1.2 s
(a) and t = 7.2 s (b) when laser is switched on at t = 0
with P > Pjet. When power is decreased, a hysteresis
loop is observed and the large deformation is sustained
at power P < Pjet until it suddenly switches back to the
small-amplitude deformation regime. Then, if the initial
thickness of the phase ϕ1 is smaller than the jet length
h, a bridge forms between the interface and the wetting
layer.

For our purpose, we want to obtain bridges instead
of jets for all laser power values P > Pc. This is en-
sured by choosing the working thickness ℓ to lie below
the switch-off height, which corresponds to h/w0 ∼ 60
(Fig. 2(a)). In practice we chose ℓ = 200μm, which is cal-
ibrated introducing a glass slab of thickness L = 800μm
at the bottom of the cell of thickness e = 2mm con-
taining the phase ϕ1 to a height of 1mm (Fig. 1). This
corresponds to ℓ/w0 ∼ 30 for the experimental data pre-
sented here, where w0 = 6.95μm (except for Fig. 2 where
w0 = 3.5μm), and therefore we shall refer to Pbridge

instead of Pjet for clarity in what follows. Experiments
were carried out at fixed temperature T − Tc = 4K (ex-
cept for Fig. 2 where T − Tc = 5K) for which we have
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Fig. 3. (a) Bridge diameter as a function of power for w0 =
6.95 μm for increasing (filled circles) and decreasing (open cir-
cles) power. Pc is the critical power below which the bridge is
no longer stabilized by light. (b) Typical bridge obtained at
230 mW. The aspect ratio is Λ ≈ 20.

n1 = 1.442, n2 = 1.462 and a surface tension value
σ = 4.20 × 10−7 J/m2 [17]. The power dependence of the
bridge diameter d is obtained by analyzing the central part
of the bridge picture. It is illustrated in Figure 3 where
filled (open) symbols correspond to increasing (decreas-
ing) power. Let us note finally that laser beams are indeed
able to stabilize bridges which would be unstable other-
wise. This can easily be demonstrated by removing the
optical excitation; Rayleigh-Plateau rupture occurs sys-
tematically.

Geometrical model

We next show that the main features associated with the
onset of the bridge structure are captured by a simple
model, in which the constricting effect of surface tension
is balanced by the radiation pressure generated by light
reflecting off the bridge surface. Since the bridge radius is
larger than the wavelength of the light, we adopt here the
simplest approach and model the propagation and the re-
flection of the light within the bridge via geometric optics.
While this is strictly correct only when the bridge radius
is much larger than the wavelength of light, it is sufficient
to reproduce the main observed features.

We model the bridge as a cylinder of radius R aligned
with the beam. As the Rayleigh range of the incident
beam, πw2

0/λ, is of the order of or larger than the bridge
length, we can consider the laser light to be shining di-
rectly downwards, without any radial spreading. Thus,
from a geometrical optics view, the light shining directly
into the bridge will not interact with the walls. Light at
a radius larger than R is reflected off the interface and
directed into the bridge. Since the index of refraction in-
side the bridge is larger than the index of the surround-
ing fluid, some of this light may be trapped inside the
bridge by total internal reflection. We assume that the to-
tal power trapped in this manner, denoted PA, is equal to
the power shining on the interface at a radius between R
and αR (α > 1). This is illustrated in Figure 4(a), where
light falling between points A and B is reflected into the

Fig. 4. (Color online). Illustration of the geometrical model
of optical bridge stabilization. (a) Rays impinging on the in-
terface at an angle larger than θc, the critical angle for total
internal reflection, participate in stabilizing the bridge struc-
ture. (b) Picture of the funnel shape at the bridge entrance
showing data analysis (white line) from which the parameter
α is estimated. (c) Linear momentum transfer Δp of a photon
that undergoes total internal reflection inside the bridge.

bridge. Thus,

PA = 2π

∫ αR

R

I(r)rdr,

= Pe
− 2R

2

w2
0

(

1 − e
−

2(α
2
−1)R

2

w2
0

)

. (2)

The parameter α is defined such that rays impinging on
the funnel at radius αR have an impact angle of θc, the
critical angle for total internal reflection. This parameter
is estimated by analyzing the actual shape of the bridge
funnel. We measure αexp = 2.13 for w0 = 6.95μm (see
Fig. 4(b)), which is almost constant within the investi-
gated range of waists.

Once the reflected light enters the bridge, it will
bounce down the bridge at some angle φ > θc to the nor-
mal. Since the optical indices of the two fluids are similar,
θc is close to π/2. More precisely, at T −Tc = 4K, we have
θc ≃ 81.4◦. Thus, a reasonable approximation is that all
of the light reflects at the same angle φ and, further, that
this angle can be approximated as

φ =
1

2

(

θc +
π

2

)

. (3)

As each trapped photon of energy Eγ reflects off of the
bridge interface, its linear momentum changes by

Δp = ‖p+ − p
−‖ = 2

n2

c
Eγ cos φ . (4)

The bridge interface receives an equal impulse in the out-
wards normal direction (see Fig. 4(c)). The total radiation
pressure on the bridge surface is given by the product of
the momentum change per photon, Δp, by the number of
reflections per unit area of the bridge wall. For photons
reflecting at an angle φ, this reflection density is given by
the rate of photons PA/Eγ divided by the area per reflec-

tion for a single photon, 4πR2 tan φ. Thus, the radiation
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Fig. 5. (Color online). Laplace pressure (solid line) and radi-
ation pressure for P < Pc (dotted line), P = Pc (dashed line)
and P > Pc (dash-dotted line), as a function of the bridge
radius R.

pressure is given by

Πradiation =
PA/Eγ

4πR2 tan φ
Δp =

n2

2c

cos φ

tan φ

PA

πR2
. (5)

Given equation (3) and n1 ≈ n2, we can expand in the
difference between the indices to find cos φ/ tan φ ≈ (n2 −
n1)/2n2.

Then, from equation (5), we can calculate the bridge
radius as a function of the laser power by balancing the ra-
diation pressure Πradiation, which tends to expand a cylin-
drical bridge outwards, against the inward constricting
stresses exerted by surface tension. Finally the equilib-
rium equation writes

σ

R
=

n2 − n1

4cπ

PA

R2
. (6)

In Figure 5 we plot the Laplace pressure ΠLaplace = σ/R
due to surface tension and the radiation pressure Πradiation

as a function of the bridge radius R. As one can deduce
graphically from Figure 5, the model predicts that there
is i) no equilibrium radius for the bridge below a critical
power Pc, ii) a unique solution R = Rc at P = Pc, and
iii) a pair of equilibrium radii (R−

eq, R
+
eq), with R−

eq < R+
eq,

when P > Pc. In the latter case, surface tension is larger
than radiation pressure for small R, since the area gath-
ering light is so small, and also for large R, since the light
is only being gathered from the dim tails of the inten-
sity profiles. For R−

eq < R < R+
eq, enough light is cap-

tured that radiation pressure dominates. For the static
balance to be stable against variation in the bridge radius,
we must have (∂RΠradiation)(Req) < (∂RΠLaplace)(Req).
This is only satisfied at R = R+

eq. Therefore, any bridge

R−
eq < R < R+

eq in this regime would be widened up to

R+
eq, the stable equilibrium, and R−

eq represents an unsta-
ble solution.

Fig. 6. Comparison between the model and experimental re-
sults for w0 = 6.95 μm and T − Tc = 4 K. Solid (dashed) line
corresponds to stable (unstable) states and circles are the ex-
perimental results.

Discussion

We plot the model’s predictions of bridge diameter as a
function of the laser power and compare them against the
measured bridge diameters in Figure 6. To faciliate the
comparison, we have rescaled the bridge diameter by the
size of the beam waist w0 and the laser power by Pc, the
power below which no bridge exists. The simple model
successfully captures all the qualitative features of bridge
formation. In particular, it demonstrates the onset of a
stable bridge when the laser power is sufficiently large,
as well as a gradual widening of the bridge radius with
power above Pc. However, there is a discrepancy in the
size of the bridge. The measured bridge is slightly wider
than that predicted by our model. In addition, with the
measured value αexp, we can use the model to estimate
the value of the critical power Pc. By definition, the lat-
ter is determined from Πradiation(Rc) = ΠLaplace(Rc) and
(∂RΠradiation)(Rc) = (∂RΠLaplace)(Rc), where Rc is the
equilibrium radius at P = Pc. Then, the dependence of Pc

on the beam waist w0 is numerically calculated and com-
pared to the measurements in Figure 7. The critical power
scales linearly with the beam waist, consistently with the
model, but there is again a quantitative offset. The model
estimate is about a factor 2.5 larger than the experimen-
tal value. These quantitative discrepancies suggest that
the crude assumptions employed in our simple model, i.e.

that light propagation can be modelled by geometric op-
tics and that all the light rays are reflected off the bridge
surface with the same angle, are unable to capture the
quantitative evolution of the bridge structure, although it
suceeds in capturing the main qualitative features of the
bridge formation.

Before concluding, we comment the influence of pos-
sible viscous stress on the bridge stability. In a previous
work, we have shown that when ΔT is small, so that the
experimental system is near the second-order phase tran-
sition, light scattering off the density fluctuations in the
liquid imparts momentum to the liquid in the lit region,
driving a flow inside the jet [13]. In the bridge regime, the
scattering-driven flow is still present and exerts a viscous
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Fig. 7. The scaling of the critical power Pc with the beam
width w0 at T − Tc = 4 K. Inset shows the predicted scaling
from the geometric optics model. The linear trend is correctly
predicted, although the overall scale is off.

stress on the interface. We can estimate the viscous stress
as follows. From our prior work, we know that a laser
beam of power P gives rise to a downward flow within the
jet with typical velocity uz. Estimates of uz from the ex-
periments give values in the range 10–100μm/s. Because
a liquid bridge is not perfectly cylindrical along its entire
length in practice, the downward light-driven flow is ac-
companied by a secondary flow whose radial component
ur satisfies ur ∼ uzR/ℓ. This radial flow gives rise to a
typical viscous stress μur/R = μuz/ℓ onto the bridge sur-
face, where μ is the mean shear viscosity (close to Tc one
has μ1 ≃ μ2). We can gauge the relative importance of
the viscous stress to the dominant stress balance keeping
the bridge open (Eq. (6)) from the dimensionless ratio be-
tween the viscous stress and the surface tension pressure.
This corresponds to a capillary number

Ca =
μuzR

σℓ
. (7)

The bridge experiments analyzed here span Ca values from
10−3 to 10−2, thus confirming the basic assumption in our
simple model that the bridge observed is governed by a
static force balance.

Conclusion

The main motivation of the present work was to give some
theoretical insights on the mechanism by which radiation
pressure allows for liquid bridges stabilization well above
the Rayleigh-Plateau onset, contrary to other external
forcing. Since the optical specificity of liquid bridges is
to behave intrinsically as waveguides, we suspected this
guiding to be at the origin of the observed stabilization.

To check this hypothesis, we used a ray optics descrip-
tion of the light trapped in the bridge and investigate the
competition between the radiation pressure of the guided
photons and the Laplace pressure. This model has then
been compared to new experiments. All predictions of
our model are retrieved experimentally, i.e. i) existence of
equilibrium between competing radial contributions of op-
tical radiation pressure and surface tension, and ii) emer-
gence of a beam power onset below which no stabiliza-
tion is possible. The quantitative comparison shows a mis-
match in the value of this onset, but we have to remember
that our ray optics approach and its subsequent ray selec-
tion mechanism by the funnel of the bridge are only a
partial picture of a more complicated electromagnetism
problem. However, since a simple ray optics description
predicts the right behaviors, it can be considered as the
first step toward a proper analytical description of laser-
sustained large-aspect-ratio liquid bridges.
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