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Fluid flows driven by light scattering
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We report on the direct experimental observation of laser-induced flows in isotropic
liquids that scatter light. We use a droplet microemulsion in the two-phase regime,
which behaves like a binary mixture. Close to its critical consolute line, the
microemulsion undergoes large refractive index fluctuations that scatter light. The
radiation pressure of a laser beam is focused onto the soft interface between the two
phases of the microemulsion and induces a cylindrical liquid jet that continuously
emits droplets. We demonstrate that this dripping phenomenon takes place as a
consequence of a steady flow induced by the transfer of linear momentum from the
optical field to the liquid due to light scattering. We first show that the cylindrical jet
guides light as a step-index liquid optical fiber whose core diameter is self-adapted
to the light itself. Then, by modelling the light-induced flow as a low-Reynolds-
number, parallel flow, we predict the dependence of the dripping flow rate on the
thermophysical properties of the microemulsion and the laser beam power. Satisfying
agreement is found between the model and experiments.

Key words: electrohydrodynamic effects, interfacial flows (free surface), MEMS/
NEMS

1. Introduction
Liquid manipulation by external fields (e.g. electric or magnetic) have been much

more studied using static fields rather than propagating fields such as those associated
with electromagnetic or acoustic waves (Eggers & Villermaux 2008). This may
be explained by the complexity of these phenomena whose description combines
wave physics with hydrodynamics. Although liquid flows and interface deformations
induced by propagating fields have some similarities to those induced by static fields,
they exhibit unique features associated with the very nature of wave propagation and
to the feedback on the wave propagation itself (Casner & Delville 2003, 2004; Casner,
Delville & Brevik 2003; Schroll et al. 2007; Brasselet, Wunenburger & Delville 2008).

The present work focuses on the bulk flow induced by a laser beam within a liquid
that scatters light. More precisely, we analyse both experimentally and theoretically
the steady flow established within light-induced liquid jets (an example is shown in
figure 1a). Such jets are obtained by destabilizing the interface of a near-critical liquid
binary mixture in the two-phase regime using the radiation pressure of a vertical
laser beam impinging on the liquid interface, as sketched in figure 1(b). In addition,
a continuous droplet emission is observed at their tip, as illustrated in figure 1(a).

† Email address for correspondence: r.wunenburger@cpmoh.u-bordeaux1.fr
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Figure 1. (a) Picture of the liquid jet obtained when the interface of a near-critical liquid
binary mixture in the two-phase regime is destabilized by the radiation pressure of a laser
beam impinging on the interface from above, i.e. from the liquid phase of largest refractive
index in our case. The steady-state dripping jet demonstrates that a steady flow is established
within the jet (beam waist w0 = 3.47 µm, beam power P = 378 mW, sample temperature T such
that T − Tc = �T = 4 K, Tc being the critical temperature of the binary mixture). (b) Sketch of
the experiment.

We will show that this flow results from the bulk force exerted by the light scattered
by the refractive index inhomogeneities of the near-critical fluid, hereafter called the
scattering force density, f scatt . A jet turns out to be the result of a complex interplay
between the radiation pressure that is a surface stress exerted perpendicular to the
liquid–liquid interface and the scattering force density that is parallel to the laser
beam. Here we aim at explaining why and how liquid flows inside the jet, whereas
the understanding of the jet length and its dripping mechanism are beyond the scope
of our study.

We notice that the usual dependence of the flow rate Q within a tube of axis (Oz)
having solid or liquid walls on the externally imposed force density dp/dz is the linear
Poiseuille law Q ∝ dp/dz. Assuming that the scattering force density f scatt ∝ P plays
the role of a pressure gradient dp/dz in the light-induced flow experiment (p is the
fluid pressure, P the laser beam power, (Oz) the axis of both the beam and the jet),
one would expect Q ∝ P. Instead, we observe an intriguing nonlinear dependence of
the form Q ∝ P2.6 for which we propose a model that couples the beam propagation
with the jet diameter. Moreover, we describe the liquid flow along the jet as a Poiseuille
flow driven by the scattering force density in a soft-walled cylindrical tube of tunable
diameter. From the quantitative agreement between the measured dripping flow rates
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and the prediction of our model, we conclude that such a unique flow behaviour is the
result of a self-adaptation of the jet diameter to the driving laser beam. Moreover, we
demonstrate that the scattering force density is at the root of the observed dripping
flow, which constitutes the first direct experimental proof of light-scattering-driven
flow.

In the following, the framework of this study is introduced by presenting the
various forces induced by electromagnetic waves, i.e. surface and bulk forces, and
their associated hydrodynamic effects. Then we review the earlier studies on light-
induced bulk flows and discuss various mechanisms of light-driven flow. This leads
us to justify the choice of our system and to present the guideline of our study.

1.1. Interface deformations induced by radiation pressure

Since a photon possesses a linear momentum that depends on the refractive index
of the medium through which it propagates, it can exchange momentum with matter
when its propagation is perturbed (Pfeifer et al. 2007). As demonstrated by the
pioneering experiments of Ashkin & Dziedzic (1973) and Zhang & Chang (1988), this
momentum transfer underlies the radiation pressure that is exerted on the interface
between two immiscible dielectric isotropic fluids of different refractive indices. As
a result, deformation of the interface and associated flow take place (Ostrovskaya
1988a , b; Grigorova, Rastopov & Sukhodol’skii 1990; Casner & Delville 2001; Sakai,
Mizumo & Takagi 2001). Using either the formalism of Maxwell’s electromagnetic
stress tensor (see Appendix B) or the detailed balance of momentum change of
reflected and refracted photons at the interface using the ray optics approximation and
Minkowski’s expression of the linear momentum (Wunenburger, Casner & Delville
2006a), the associated electromagnetic surface stress is found to be normal to the
interface and directed from the fluid of highest refractive index to the fluid of lowest
refractive index. Such electromagnetic actuation of fluid interfaces is at the root of
a recently developed versatile non-contact measurement technique of interfacial and
bulk mechanical properties of simple and complex fluids (Mitani & Sakai 2002;
Yoshitake et al. 2005, 2008).

Often, a steady liquid interface deformation due to a steady radiation pressure
looks like the one obtained when two dielectric fluids are submitted to a static electric
field. One can mention the following situations.

(a) When an initially flat dielectric interface is subjected to either a non-uniform
static electric field (Schäffer et al. 2000; Sakai & Yamamoto 2006) or to an
electromagnetic beam (Casner & Delville 2001; Wunenburger et al. 2006a), the
resulting small-amplitude, steady deformations are bell-shaped.

(b) Sessile drops strongly stretched by the radiation pressure of light become cones
(Chräıbi et al. 2008b) resembling those obtained using a uniform static electric field
(Wohluter & Basaran 1992).

(c) Dielectric liquid bridges of aspect ratios larger than the Rayleigh–Plateau
instability threshold value can be stabilized using either an axial uniform static
electric field (Raco 1968; Gonzalez et al. 1989) or a coaxial laser beam (Casner &
Delville 2004). Marr-Lyon, Thiessen & Marston (2001) showed that liquid bridge
stabilization can also be achieved using the radiation pressure exerted on the bridge
surface by a steady acoustic field.

(d ) Dripping jets can result from the destabilization of an initially flat interface or
spherical drop using either a static electric field (Zeleny 1914) or a laser beam when
the beam impinges the interface from the fluid of lowest refractive index (Casner &
Delville 2003).
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Figure 2. (a) Illustrative sketch of a light-scattering fluid sample made of a collection of
individual scatterers, with refractive index ns , that are randomly distributed in a homogeneous
fluid with refractive index n �= ns . An incident laser beam of characteristic diameter 2w0 passes
through the sample of thickness L. (b) Illustration of the light scattering process by a single
scatterer of radius R.

However, these seemingly similar deformations are generally driven by different
physical mechanisms. In case (b), the conical shape in the static case is due to the
scale invariant divergence of the electric field, hence of the electrostatic stress, as
the curvature of the deformation tip increases – a mechanism that does not hold in
the propagating case. In case (c), optically stabilized bridges result from the guiding
of light inside the liquid column (Brasselet & Delville 2008; Brasselet et al. 2008) –
a mechanism that basically involves field propagation and the wavelength as an
intrinsic length scale of the light–matter coupling, which are both irrelevant in the
electrostatic case. Interestingly, we notice that large-amplitude ‘nipple-like’ interface
deformations observed when a laser beam impinges on an interface from the fluid of
lowest refractive index (Casner et al. 2003; Chräıbi et al. 2008a) have no equivalent
under actuation by other fields. More generally, the genuine physics of interface
deformations induced by electromagnetic radiation pressure is by essence due to the
feedback of the deformed interface on the radiation pressure itself (Casner & Delville
2003; Wunenburger et al. 2006a; Brasselet & Delville 2008; Brasselet et al. 2008).

1.2. Bulk flows induced by bulk forces

When the radiation pressure, which acts as a normal stress (see Appendix B), is time-
independent, the flow associated with the interface deformation vanishes at steady
state. The shape of the interface is therefore solely determined by the balance of
radiation pressure, Laplace pressure and buoyancy (Chräıbi et al. 2008a). However,
steady bulk forces induced in a liquid by the scattering or the absorption of light by
the medium may induce steady flows.

Savchenko, Tabiryan & Zel’dovich (1997) theoretically considered the bulk force
field associated with the transfer of momentum from light to the bulk of an isotropic
liquid and calculated the resulting bulk flow. To do so, either light absorbing or light
scattering liquids can be used. Absorption can occur in simple fluids or in suspensions,
whereas light scattering requires spatial inhomogeneities of the refractive index. A
simple illustration of the latter case is depicted in figure 2(a). It consists of a laser
beam (i.e. a flux of photons) that propagates along the z-axis through a liquid that
scatters light. Such a liquid may be viewed as a collection of individual scatterers,
with refractive index ns , that are randomly distributed in a homogeneous fluid with
refractive index n �= ns . The projection along z of the net momentum of the beam
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thus progressively decreases during propagation due to absorption or scattering of a
fraction of the incident photons, as sketched in figure 2(b). Consequently, a net force
per unit volume, directed along z, is exerted on the bulk of the liquid: this is the
scattering force density, f scatt .

A more detailed analysis of the light–matter interaction reveals the limited accuracy
of the simple picture presented above and the associated experimental constraints.
Indeed, the illumination of a homogeneous light-absorbing liquid induces heating that
may give rise to thermal free convection, boiling or thermo-capillary flows when a
liquid interface is present. All these effects may prevent an unambiguous observation
of the bulk flow induced by the light momentum transfer. For these reasons, we
shall restrict ourselves to particles suspended in non-absorbing liquids. However, we
notice that although suspensions usually scatter light, they can also absorb it, thereby
increasing the efficiency of the light momentum transfer. In this case, several side
effects may also overcome the flow induced by the light momentum transfer, as
discussed hereafter.

When aerosols are used, the differential heating of the surrounding gas by the
side-illuminated particles induces a particle motion formerly called photophoresis
(Rohatscheck 1985). The direction of this motion depends on the respective
contributions of light refraction and absorbtion by the particle and its amplitude can
be much larger than the contribution of the light momentum transfer. On the
other hand, when the absorbing particles are suspended in a liquid, backward particle
motion can be observed at low laser intensity (Monjushiro, Takeuchi & Watarai 2002).
This results from a competition between the scattering force and still unexplained
hydrodynamic effects associated with particle heating. Unexpected phenomena related
to heating can be observed too at high laser intensity. For example, (i) extremely
rapid particle motion (velocity of 1 µm diameter particles of order 104 m s−1) due to
vaporization-induced shock waves (Zakharov, Kazaryan & Korotkov 1994) and (ii)
still unexplained rapid particle motion (velocity of 2 µm diameter particles of order
102 m s−1) in either forward or backward direction depending on the light focusing
(Kazaryan, Korotkov & Zakharov 1995) and that does not involve boiling. Thus,
the consequences of heating due to light absorption prevent the flow due to light
momentum transfer to be observed per se. Consequently, we will further focus our
attention on non-absorbing liquid suspensions.

1.2.1. Individual motion versus flow as a whole

Let us consider a liquid suspension of thickness L made of non-absorbing scatterers
randomly distributed in a non-absorbing liquid, as sketched in figure 2(a). When an
incident light field is scattered by an individual scatterer, as depicted in figure 2(b),
the spatial redistribution of the momentum of light leads to a force Fscatt exerted
on the scatterer, which is expected to move relatively to the surrounding fluid. In
general, the response of the system is described by the combination of a collective
response of the suspension and a longitudinal segregation process (i.e. along the
beam axis). The relative weight of these two contributions depends on the ratio
�u‖/u, where �u‖ is the component of the relative velocity of the scatterers with
respect to the liquid that is parallel to the beam axis and u is the average suspension
velocity.

On the one hand, u is estimated from the balance between the work per unit
time Ẇ done by the scattering force density f scatt on the liquid and the net viscous
dissipation rate Ḋ. First, we have Ẇ ∼ f scattuw2

0L, where w0 is the characteristic beam
radius and f scatt ∝ τ Sn/c (the proportionality factor between f scatt and S depending
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on the angular distribution of the scattering of light, i.e. on the size and shape of
the scatterers; see van de Hulst 1957). Here we have introduced the Poynting vector
S = I ẑ, where I is the characteristic light beam intensity and ẑ is the z-axis unit vector,
c is the speed of light in vacuum and τ = −(1/I )(dI/dz) is the intensity attenuation
coefficient due to scattering (also called turbidity), which is assumed to satisfy τL � 1.
In addition, under the assumption of low Reynolds flow, we have Ḋ ∼ L3η(u/L)2,
where η is the dynamic viscosity of the suspension. Therefore, we deduce from
Ẇ ∼ Ḋ that u ∼ w2

0f
scatt/η. On the other hand, �u‖ is determined by the balance

between the scattering force Fscatt = ΣnS/c exerted on an individual scatterer (Σ is
the particle scattering cross-section) and the viscous drag force −6πηR�u‖, where R

is the radius of the scatterers assumed to be spherical for simplicity. We thus obtain
�u‖ ∼ ΣnI/cηR.

By definition, the suspension is pushed as a whole if �u‖ � u. Since in the single
scattering regime τ ∼ NΣ , where N is the number of scatterers per unit volume, this
occurs when the volume fraction of scatterers, Φ = (4π/3)NR3, satisfies the condition

Φ � R2

w2
0

. (1.1)

We notice that this constraint of small enough scatterers and/or dense enough
suspensions adds to the condition of good optical transparency of the sample that is
required to deal with a truly bulk force field,

τL � 1. (1.2)

The above conditions may induce severe constraints on the refractive index mismatch
between the scatterers and the surrounding liquid. To illustrate this, let us consider
the regime of Rayleigh scattering characterized by R � λ (λ is the wavelength of the
light beam in the suspension). In that case, it is known that τ ∼ NR2(�n/n)2(kR)4,
where k =2π/λ (van de Hulst 1957) and �n= ns − n, and one finds that conditions
(1.1) and (1.2) are compatible only if (�n)2(R2/w2

0)(L/R)(kR)4 � 1.
Finally, we notice that the opposite situation, where �u‖ � u is commonly used for

optical chromatography, i.e. longitudinal segregation within flowing multi-component
suspensions driven by cross-section-dependent light scattering (Kaneta et al. 1997;
Hart & Terray 2003).

1.2.2. Transverse segregation

Another possible cause of segregation of an illuminated suspension is the
gradient force density f g , which tends to attract particles whose refractive index
is larger than the one of the surrounding fluid n into the high-intensity regions.
As shown by Harada & Asakura (1996) the expression of the net gradient force
Fg exerted on a single small spherical particle (R � λ) takes a simple form when
�n � 1, namely Fg = (2πR3/3)(�n/n)(∇I/c). Its transverse component thus scales as
(�n/n)R3(I/cw0). Apart from its application to individual particle trapping (optical
tweezers; see Padgett, Molloy & McGloin 2009), the gradient force also underlies of
large optical nonlinearities of suspensions that are involved in self-focusing (Ashkin,
Dziedzic & Smith 1982) or phase conjugation (Smith, Maloney & Ashkin 1982)
phenomena.

Since suitable suspensions for light-induced flow experiments correspond to rather
high concentrations of scatterers (see conditions (1.1) and (1.2)), their transverse
segregation may be described as a diffusion process under the action of the gradient
force. By so doing, a noticeable transverse gradient of concentration of scatterers
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appears during the flow of the suspension on the distance L if the characteristic time
scale td of Brownian diffusion of the particles on the distance w0 due to the gradient
force is shorter than L/u. Typically, we have td = w2

0/D, where D is their diffusion
coefficient, whose order of magnitude is given by the Einstein–Smoluchowski relation
D = kBT /6πηR, with kB the Boltzmann’s constant and T the temperature. Collective
transverse segregation of the suspension therefore has no time to settle during the
flow if td � L/u, which can be rewritten as

I � kBT

6π

Lc

τnRw4
0

, (1.3)

a kinetic condition that involves the beam intensity. Alternatively, the amplitude of
the transverse segregation can be determined by the balance between the diffusive flux
density j d of particles associated with the transverse gradient of concentration and
the opposite flux density of particles due to the gradient force jg . On the one hand,
we have jd ∼ DδN/w0, where δN is the transverse variation of N . On the other hand,
jg = N�u⊥, where �u⊥ = Fg/6πηR is the particle transverse drift velocity. Recalling

that Φ ∼ NR3, the transverse variation of Φ , δΦ , is obtained from jd ∼ jg , which gives

δΦ

Φ
∼ 2πR3

3kBT

I

c

�n

n
, (1.4)

a thermodynamic condition that also involves the beam intensity. Negligible transverse
segregation thus corresponds to δΦ/Φ � 1, which can be rewritten as

I � 3kBT c

2πR3

n

�n
. (1.5)

Notice that δΦ/Φ can be rewritten in a more general form that emphasizes the
key role played by the osmotic compressibility of the suspension, κT =(∂N/∂P)/N |T ,
where P is its osmotic pressure. Since the local osmotic equilibrium ∇P = N Fg is
the analogue of the condition of local hydrostatic equilibrium in pure compressible
fluids, we indeed obtain

δΦ

Φ
∼ 2πR3

3

I

c

�n

n
NκT . (1.6)

One can check that the condition (1.5) is also retrieved from (1.6) in the case of ideal
mixtures, for which NκT = (kBT )−1.

When transverse segregation cannot be neglected, it may induce scattering force
density gradients since the turbidity τ explicitly depends on the volume fraction Φ . It
should therefore be taken into account for any quantitative analysis of experimental
measurements.

1.2.3. Conclusion and relevance of the present study

When the above conditions under which a suspension flow induced by light
scattering can be considered as homogeneous are not fulfilled, segregation phenomena
must be described simultaneously with the flow. The sensitivity of the light-induced
hydrodynamics of a suspension to its thermodynamic and rheological properties is
well illustrated by (1.6), where κT can strongly differ from (kBT )−1 when the suspended
scatterers do not behave ideally, for example in multi-component liquid mixtures.

In addition to the lack of theoretical description of light-induced hydrodynamics,
very few quantitative experimental studies of light-driven bulk flows of scattering
suspensions have been performed. Even a direct experimental proof of a bulk flow
induced by the scattering force density in a suspension is lacking.
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The first indirect proof of a light-induced bulk flow within a scattering fluid has been
given in Schroll et al. (2007) by using a near-critical binary liquid mixture in the two-
phase regime. It consists in the observation of broad (compared to w0) deformations
of the interface between the coexisting phases induced by an upward vertical laser
beam impinging on the sample from the phase of lowest refractive index. These
experimental results have been compared with their theoretical prediction based on
drastic assumptions: (i) the two-layer liquid sample was described by a single phase,
the bottom one, bounded by free surfaces; (ii) the broad surface deformations were
considered to originate only from the bulk creeping flow induced by the laser beam;
(iii) the observed slender ‘nipple-like’ interface deformation due to the radiation
pressure, whose width is of the order of w0, oriented in a direction opposite to the
broad deformation formed by the bulk flow, was assumed to have no influence on the
broad deformation or the flow. Although satisfactory agreement between experiments
and theory has been obtained in Schroll et al. (2007), the comparison remained
only semi-quantitative. Moreover, the existence of a bulk flow could not be directly
demonstrated in this experimental configuration.

On the other hand, puzzling observations of the deformations of the free surface
of a colloidal suspension of submicrometric latex spheres under pulsed illumination
have been reported in Mitani & Sakai (2005). These results have been interpreted
as a change of the liquid pressure beneath the surface due to an osmotic pressure
contribution associated with steady segregation of the scatterers by the scattering
force. The possible effect of a flow has thus been discarded, although the condition
�u‖ � u given by (1.1) was satisfied. Such a controversial interpretation reinforces
the need for an experiment providing a direct proof of the bulk flow induced by light
scattering.

Given the above considerations, the use of a fluid near a critical point (near-
critical fluid) constitutes an attractive alternative to non-absorbing, light scattering
suspensions. At thermodynamic equilibrium, a near-critical fluid displays spatial and
temporal fluctuations of composition (i.e. of refractive index) whose size increases
in a well-documented manner as the critical point is approached (Sengers & Levelt-
Sengers 1978), leading to the well-known phenomenon of ‘critical opalescence’. These
fluctuations may be viewed as a distribution of light scatterers whose submicrometric
size can be tuned with temperature. Since these fluctuations take place in the whole
fluid, such a fluid always satisfies the condition (1.1) and is thus expected to flow as
a whole under the action of a light beam. Moreover, although the turbidity strongly
varies with temperature, the condition of optical transparency given by (1.2) is actually
always satisfied in our experiments, as shown in the next section.

Finally, transverse gradients of composition due to electrostriction (i.e. gradient
force-induced segregation) and to thermodiffusion (Soret effect) induced by the beam
result in negligible transverse variations of the refractive index δn and of the turbidity
δτ of the microemulsion, as discussed in § 7.3.

This paper is organized as follows. In § 2, we present the equilibrium and transport
properties of the two-phase near-critical binary liquid mixture that we used. The
description of the experiment and a first qualitative observation of the jet are presented
in § 3. This allows us to identify the characteristic features of the jet shape, the
propagation of light inside it, and the light-induced flow. Then we demonstrate in § 4
that the beam propagation, the jet shape and the flow, which are a priori coupled,
can in fact be partially decoupled. In § 5, we show that the measured jet diameter
can be quantitatively described as the result of the balance between Laplace pressure
and radiation pressure following a liquid optical fibre model (Brasselet & Delville
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Figure 3. (a) Sketch of a sample of near-critical two-phase microemulsion. Each phase i,
i =1, 2 is characterized by a well-defined value of the volume fraction of droplets Φi , of
the average distance between droplets dm,i and of the refractive index ni . The double-arrow
indicates the characteristic size Λ of the fluid element used to describe the flow of the
microemulsion as well as Maxwell’s electromagnetic stress tensor: see § 4. (b) Magnification
showing the subwavelength fluctuations of the volume fraction of droplets and of the refractive
index existing in each phase at thermodynamic equilibrium. These fluctuations induce light
scattering. (c) Further magnification on a fluctuation of the volume fraction of droplets of
characteristic size ξ− common to both phases. The average distance between the droplets,
dm,2, is indicated. As the sample temperature T approaches its critical temperature Tc , ξ−

diverges whereas Φi (resp. dm,i), i = 1, 2, both tend towards the same value Φc = 0.11 (resp.
dm,c = 13 nm). In the investigated temperature range, ξ− varies within the range 14–47 nm.
(d ) Further magnification on a single droplet of constant radius rm = 4 nm.

2008). Consequently, we come to the conclusion there is no significant feedback of
the light-induced flow on the jet shape or the beam propagation. Next, in § 6, we
describe the flow as a parallel creeping flow driven solely by the scattering force
density associated with the light guided along the jet. In § 7 we present the dripping
flow rate measurements, which are compared to our theoretical predictions. Finally,
we discuss the obtained agreement between experiment and theory.

2. Equilibrium and transport properties of the liquid sample
Our sample is a near-critical fluid that consists of a quaternary mixture of toluene

(mass fraction 69.6 %), water (9.34 %), sodium dodecyl sulphate (SDS, 4.31 %)
as surfactant and n-butanol (16.75 %) as co-surfactant. For this composition its
equilibrium state is a water-in-oil droplet microemulsion (hereafter microemulsion for
simplicity), i.e. a thermodynamically stable suspension of droplets within a continuous
phase composed of toluene and alcohol. The droplets are stabilized by surfactant and
are made of water (principally), alcohol and SDS. Their characteristic radius rm is
4 nm, as sketched in figure 3(d). Moreover, for this composition, the microemulsion is
close to a consolute line at room temperature and undergoes a critical behaviour. In
the vicinity of the critical temperature Tc = 308 K, this quaternary mixture behaves as
a critical binary mixture, the volume fraction of droplets Φ being the order parameter
of the second-order phase transition. For a temperature T < Tc the sample is one-
phase. For T >Tc the sample, sketched in figure 3(a), is two-phase, the upper phase
of index 1 (respectively, the lower phase of index 2) being the phase of smallest
(resp. largest) volume fraction of droplets Φ1 (resp. Φ2) and of largest (resp. smallest)
refractive index n1 (resp. n2). The composition is chosen such that the sample separates
into two phases of equal volumes at T = Tc. This corresponds to an average volume
fraction of droplets of the sample Φ = 0.11 equal to its critical value Φc. The average
distance between the droplets is dm,i = (4π/(3Φi))

1/3rm, i = 1, 2, c, and weakly departs
from dm,c =13 nm in the investigated temperature range.
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As the critical consolute line is approached, the isothermal osmotic susceptibility of
the microemulsion χT =(∂Φ/∂µ)|T (µ is the chemical potential) diverges. This induces
the divergence of the correlation length ξ of the fluctuations of the order parameter,
i.e. of the size of the fluctuations of the volume fraction of droplets, sketched in
figure 3(b, c). Given the isotropy of the microemulsion and the temperature range
investigated here, �T = T − Tc = 2–15 K, the thermophysical properties of the two-
phase sample are assumed to obey the asymptotic scaling laws of critical phenomena
of the universality class (d = 3, n= 1) of the Ising model, where d and n are here,
respectively, the space and order parameter dimensionality (Sengers & Levelt-Sengers
1978). Namely, χT and ξ are assumed to diverge at the critical temperature following

χ
±
T = χ

±
T 0

(
|�T |
Tc

)−γ

, (2.1)

ξ± = ξ
±
0

(
|�T |
Tc

)−ν

, (2.2)

with γ = 1.24, ν = 0.63, ξ+
0 = 4 nm, χ+

T 0 = 5.78 × 10−6 Pa−1 (see Appendix A), χ+
T 0/

χ−
T 0 = 4.3 ± 0.3 and ξ+

0 /ξ−
0 = 1.9 ± 0.2 (Beysens, Bourgou & Calmettes 1982). The

scaling laws (2.1) and (2.2) written with index + (resp. −) are valid in the one-phase
region (resp. for each phase in the two-phase region) (Moldover 1985; Beysens et al.
1982). Typical values of ξ− encountered in the experiments range from 47 nm at
�T = 2 K to 14 nm at �T = 15 K.

Assuming, for simplicity, the coexistence curve to be symmetric with respect to Φc,
we get

Φi = Φc + (−1)i
�Φ0

2

(
�T

Tc

)β

, i = 1, 2, (2.3)

with β = 0.325 and �Φ0 = 0.42, an effective value determined from a careful study of
the small-amplitude interface deformations induced by radiation pressure in Chräıbi
et al. (2008a).

Since the average distance between the droplets is small compared to the optical
wavelength, a simple expression for the effective relative dielectric permittivity ε of
the suspension can be derived from a mean field calculation. For this purpose, we
introduce the relative dielectric permittivities of the mixture composing a droplet and
the continuous phase, εdrop = 1.86 and εcont = 2.14, respectively. It is known that, to
leading order in |εcont − εdrop |/(εcont + εdrop), the relationship between ε and Φ for each
phase is (Landau, Lifshitz & Pitayevski 1984)

εi = Φiεdrop + (1 − Φi)εcont − Φi(1 − Φi)(εdrop − εcont )
2

3(Φiεdrop + (1 − Φi)εcont )
, i = 1, 2. (2.4)

The corresponding refractive indices are obtained using ni =
√

εi . Typical values for
the refractive index difference n1 − n2 encountered in the present experiments range
from 8.2 × 10−3 at �T = 2 K to 1.6 × 10−2 at �T = 15 K.

The interfacial tension σ , defined for T >Tc, vanishes at Tc following

σ = σ0

(
�T

Tc

)2ν

, (2.5)

where σ0 = 0.39kBTc/ξ
+2
0 = 10−4 Nm−1 (Moldover 1985; Casner & Delville 2001).

Typical values of σ encountered in the experiments range from 1.8 × 10−7 Nm−1 at
�T = 2 K to 2.3 × 10−6 Nm−1 at �T = 15 K.
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Concerning the rheological properties of the microemulsion, the volume fraction
of droplets in each liquid phase is small enough to assume a Newtonian behaviour
(viscoelastic effects are indeed noticeable at volume fraction of droplets larger than
0.3; Cametti et al. 1990). The viscosity values of each phase in the two-phase region
are extrapolated from the measurements performed in the one-phase region near
T = Tc by Freysz (1990). This is done by using Einstein’s relationship, which is valid
for low-volume fraction suspensions of solid spheres (this seemingly rough choice is
justified in Appendix A):

ηi(mPa · s) = (1.460 − 0.014T (◦C))(1 + 2.5Φi), i = 1, 2. (2.6)

Finally, we notice that the optical absorption coefficient αabs at wavelength
λ0 = 514.5 nm in vacuum is very small, αabs ∼ 5.10−2 m−1 (Jean-Jean et al. 1988).

3. Characteristic features of the jet
3.1. Experimental set-up

The two-phase sample of near-critical microemulsion is enclosed in a fused quartz
cell of height h = 2 mm and 10 mm × 40 mm horizontal cross-section (see figure 1b).
Its temperature T is regulated with a 50 mK accuracy in the range 2–15 K above Tc.
In this study, we investigate a set of temperatures that correspond to �T =2, 4, 8, 12
and 15 K.

The light source is a linearly polarized beam obtained from a continuous wave
Ar+ laser operating in the TEM00 mode at λ0 = 514.5 nm. The laser beam propagates
vertically downwards along z and is focused on the horizontal liquid interface of the
sample that is located at the half-height of the cell. In the cylindrical coordinates

system defined by the unit vectors (r̂, θ̂ , ẑ), the intensity distribution of the beam
cross-section at the interface is

I (r) =
2P
πw2

0

exp

(
−2r2

w2
0

)
, (3.1)

where P is the total beam power and w0 the beam waist that is set to 3.47 µm in this
study.

Finally, the interface deformations are observed in transmission using a CCD
camera using a white light side illumination. Although small, the turbidity of the
sample may reduce the sharpness of the interface image (blurring) if the distance
between the laser beam and the cell side that faces the camera is too large. On
the other hand, it is preferable to have it as large as possible in order to prevent
unwanted non-axisymmetric drawbacks. A trade-off is found in practice by choosing
such a distance to be roughly 50 µm.

3.2. Qualitative observation of the light-induced jet

At low power, the radiation pressure of the laser beam induces a bell-shaped
deformation whose height increases with the beam power. At a given power threshold
(Casner & Delville 2003) the deformation profile suddenly changes to a vertical
needle-like deformation with diameter d of the order of w0 and length of the order
of several tens of w0. Moreover, the needle tip continuously emits droplets, as shown
in figure 4(b).

By inserting a thick birefringent crystal between the sample cell and the camera
and suitable beam polarization adjustment it is possible to simultaneously acquire on
the CCD two different pictures of the same experiment: the jet superimposed on the
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Figure 4. Simultaneous imaging of the shadow of the jet superimposed on the laser light
scattered towards the camera (a) and of the shadow of the jet alone (b). The jet can be divided
into three parts to which we, respectively, refer to as parts A, B and C. See the text for a
detailed analysis of each of these parts. Experimental conditions are w0 = 3.47 µm, �T =8K
and P = 350mW.

laser light scattered by the refractive index fluctuations of the sample and the shadow
of the jet alone obtained by refraction of the white light. Such a double picture is
shown in figure 4. In fact, the simultaneous visual inspection of both the jet shape
and the distribution of light intensity within it reveals the guiding of the light within
the jet. Wave guiding is indeed a consequence of the inequality n1 >n2, which implies
total internal reflection of light on the jet boundary.

One can distinguish three parts along the jet: the beam injection funnel, A, the
cylindrical guiding part, B, and the tip emitting droplets, C. Along part A, the
interface shape continuously evolves from a flat interface to a cylinder and the light
beam exhibits a conical intensity distribution showing its progressive focusing into
the jet. A cone of light outlined by dotted lines originating from the A–B boundary
shows that a part of the incident light is not guided by part B. Along part B
the laser light intensity distribution is invariant along z and the jet is straight and
cylindrical, as a result of the guiding of light by the jet. At the beginning of part
C the beam is no longer guided, as shown by its sudden spreading by diffraction
outlined by dotted lines. Then, the jet undulates downwards and breaks into regularly
detaching droplets. Such a continuous dripping jet phenomenon reveals that a steady
flow takes place inside the jet. Notice finally, that the jet length (Wunenburger,
Casner & Delville 2006b), its diameter and the flow rate all increase with the beam
power.

Experimentally, we will use the fact that the flow rate of the dripping jet is
equal to the flow rate inside part B of the jet. Moreover, when considering the
quantitative description of the flow rate inside the jet, we will benefit from the above
qualitative observations. In particular, we will derive a model that describes the beam
propagation, the flow and their coupling.
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4. Model of coupled beam propagation, jet shape and flow
Achieving a tractable theoretical model of the above-mentioned experimental

observations requires an accurate description of the beam propagation, the jet shape
and the flow. First, we present the equations describing the velocity, pressure and
electromagnetic force fields associated with the observed jet shape and flow, which
turn out to be decoupled in part B of the jet (see figure 4).

Since the observed flow is characterized by a small Reynolds number Re ∼ 10−4 (see
§ 7), we assume that a creeping, incompressible, steady flow driven by light develops in
each liquid phase. The fluid under study is a microemulsion, i.e. a two-phase fluid from
the point of view of both hydrodynamics and electromagnetism. So, the description
of its composition, of its flow, and of the electromagnetic forces exerted on it strongly
depends on the characteristic size of the fluid element considered for their definition
in the framework of continuum mechanics and electrodynamics, i.e. on the length
scale Λ over which they are averaged. Since λ= λ0/nc � 350 nm, where nc =1.464 is
the refractive index of the microemulsion in the one-phase region, and due to the
fact that ξ− varies in the range 14–47 nm and dm,i � 13 nm, we have λ� ξ− >dm,i .
Consequently we can choose Λ such that λ>Λ � ξ−. This choice allows us to write
the equation of conservation of momentum in the Stokes regime in the following
form:

0 = f hydro
i + f em

i + f scatt
i , i = 1, 2. (4.1)

Here, f hydro
i is the classical hydrodynamic force per unit volume exerted on each

fluid phase i considered to be homogeneous since Λ � ξ−. f em
i is the electromagnetic

force density exerted on each phase i considered as a perfect isotropic dielectric that
is homogeneous at the scale of the spatial variations of the electric field λ since
λ> Λ � ξ−. f scatt

i is the scattering force density associated with the scattering of light
by the subwavelength refractive index fluctuations that actually drives the flow.

In agreement with the condition Λ � ξ−, we assume that, as far as their flow is
concerned, each phase behaves as a homogeneous, Newtonian fluid at the scale of Λ.
Consequently, f hydro

i can be expressed as the divergence of the classical hydrodynamic

stress tensor Thydro
i = −pi I + 2ηiD(vi), where vi and pi are, respectively, the velocity

and the pressure of liquid phase i, I is the identity tensor, ηi the viscosity of the
suspension defined by (2.6), and D(v) = (∇v +t ∇v)/2 is the hydrodynamic strain rate
tensor valid for incompressible flows, i.e. for which ∇ · v = 0, where t (. . .) refers to the
transpose operator.

In the following, we justify and specify the expression of the electromagnetic forces
as the sum of f em

i and f scatt
i .

4.1. Electromagnetic force density under homogeneous medium approximation

Since Λ � ξ− > dm, the effective relative dielectric permittivity εi of each liquid phase
i at the scale Λ is given by (2.4). The force density f em exerted on a dielectric
homogeneous fluid can be expressed as the divergence of the Maxwell electromagnetic
stress tensor Tem provided that the relative dielectric permittivity and the density of
the fluid are homogeneous at the scale of the spatial variations of the electric field
E, i.e. λ (Landau et al. 1984). Since Λ < λ, this condition is fulfilled, which allows
us to assume that the electromagnetic force density exerted on each liquid phase
incorporates a contribution f em

i defined as the divergence of

Tem
i =

1

2
ε0ρi

∂εi

∂ρi

∣∣∣∣
T

E2I − 1

2
ε0εi E2I + ε0εi E tE, i = 1, 2, (4.2)



286 R. Wunenburger and others

where εi and ρi are the effective relative dielectric permittivity and average density
of the liquid phase defined at the scale Λ, ε0 is the dielectric permittivity of vacuum.
In (4.2) and in the following, all quantities involving the electric field are implicitly
time-averaged over one optical period.

The first term of (4.2) is usually called the ‘electrostriction term’. Noting that
the force density associated with the two last terms of (4.2) can be written as
∇ · (ε0εEt E −ε0εE2I/2) = −ε0 E2∇ε/2 (Landau et al. 1984), we conclude that it cancels
in the bulk of both liquid phases since they are considered as having a homogeneous
dielectric constant.

Introducing the pseudo-pressures qi =pi − ε0 E2
i ρi/2(∂εi/∂ρi)

∣∣
T

and using the flow
incompressibility and liquid phase homogeneity assumptions, (4.1) becomes

0 = −∇qi + ηi�vi + f scatt
i , i = 1, 2. (4.3)

Since f scatt is due to the scattering of light by finite refractive index fluctuations of
characteristic size ξ− � Λ, its derivation requires a description of the propagation of
light and of the fluid using a length scale smaller than Λ. This is the aim of the next
section.

4.2. The scattering force density

In this section, we derive the expression of the scattering force density f scatt by
describing the microemulsion and the electromagnetic field on a scale Λscatt that is
much smaller than the characteristic size of the refractive index inhomogeneities, ξ−.

In the case of a spherical particle of radius R such that R � λ, it has been shown
that both the corpuscular approach and the continuum electrodynamics approach
based on the electromagnetic tensor predict the same expression for the scattering
force exerted on an individual particle (Nieto-Vesperinas, Chaumet & Rahmani 2009).
In the case of a near-critical fluid, it is usual to describe the scatterers in terms of
a continuously varying refractive index field characterized by a correlation length
ξ− that diverges at the critical temperature (see Appendix A). Here we combine the
latter framework to the above-mentioned corpuscular approach in order to derive the
scattering force f scatt exerted on the microemulsion.

First, we assume that the absorption of light is weak and can be neglected.
Therefore, the force per unit volume exerted on the microemulsion is solely due to the
elastic scattering of the incident light by the refractive index fluctuations. As discussed
in § 1.2, the scattering force density exerted on a fluid by a light beam is equal to
the loss of momentum per unit cross-section area and per unit time of the beam
associated with its propagation through the fluid over a unit distance. The scattering
force density is related to the turbidity τ , which is the relative loss of intensity of the
beam per unit propagation length. Noting that I−1(d2I/dΩdz)(Ω) dΩ is the relative
intensity scattered per unit length in the solid angle dΩ centred on the direction Ω ,
the turbidity is defined as

τ =

∫∫
1

I

d2I

dΩ dz
(Ω) dΩ. (4.4)

The momentum flux density associated with the light scattered in the direction of
unit vector u is (nI/c)u, where n is the average fluid refractive index and I the light
intensity. Consequently, the scattering force density can be written as

f scatt = −
∫∫

n

c

d2I

dΩ dz
(Ω)uΩ dΩ, (4.5)
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where uΩ is the unit vector associated with the direction Ω . Using Ornstein and
Zernike’s theory of light scattering by critical fluctuations (Ornstein & Zernike 1914),
Puglielli & Ford (1970) calculated the turbidity of a near-critical pure fluid from (4.4)
(see Appendix A). Schroll et al. (2007) used (4.5) to calculate the scattering force
density in a near-critical binary mixture:

f scatt
i =

π3

λ4
0

niIi

c

(
∂εi

∂Φi

∣∣∣∣
T

)2

kBT χT g(αi) ẑ, i = 1, 2, (4.6)

where αi = 2(kiξ
−)2, ki =2πni/λ0 being the wavenumber of the incident

monochromatic beam and

g(αi) =
8
3
α3

i + 2α2
i + 2αi −

(
2α2

i + 2αi + 1
)
ln(1 + 2αi)

α4
i

, i = 1, 2 (4.7)

The order of magnitude of the scattering force density involved in our experiments
is inferred from the relationship f scatt � τIn/c. The turbidity of the near-critical
microemulsion measured by Freysz (1990) in the one-phase region, in the same
range of �T as used here, has been found to be of the order of 100–300 m−1

(see Appendix A). In addition, the turbidity in the two-phase region is approximately
4 times smaller than in the one-phase region (see (2.1)). Consequently, in the two-phase
region, the typical values of the turbidity range between 25 and 75 m−1. Notice that
τ � αabs , confirming that the light-induced force density actually originates mainly
from light scattering. Using 〈n〉 = 1.464 as a characteristic value for the refractive index
and I ∼ 2P/πw2

0 with P = 0.1 − 1 W, we find f scatt/I ∼ 10−7 − 4 × 10−7 NW−1 m−1

and f scatt � 6 × 102 − 2 × 104 Nm−3. The exact variations of f scatt
i /I as a function of

temperature predicted by (4.6) confirm this rough estimate. For α � 1, i.e. far from the
critical point, g(α) � 8/3 and the scattering force scales as (|�T |/Tc)

−γ (in particular,
we recover that f scatt vanishes for vanishing size of the refractive index fluctuations).
Close to the critical point α � 1 (α > 1 in the temperature range �T < 8 K), so
g(α) ∼ α−1 ∼ (|�T |/Tc)

2ν and consequently f scatt ∼ (|�T |/Tc)
−γ+2ν ∼ (|�T |/Tc)

0.02: the
scattering force becomes practically independent of �T . Notice that f scatt takes
practically the same values in both phases in the investigated temperature range since
the material properties of the phases do not differ much.

4.3. Force balance at the interface

Finally, the flow equation (4.3) expressed in both phases has to be completed by the
expression of the balance of the forces exerted on the interface between fluids 1 and 2.
Assuming a uniform interfacial tension σ and using Λ as the characteristic length
scale of the description of the liquid phases and of the interface, this force balance
can be written as(

Thydro
2 − Thydro

1

)
n1→2 +

(
Tem

2 − Tem
1

)
n1→2 − σκn1→2 = 0, (4.8)

where n1→2 is the unit vector normal to the interface oriented from 1 to 2 and κ the
interface curvature, all the tensors being evaluated at the interface. Introducing the
pseudo-pressures, (4.8) can be rewritten as

(q1 − q2)n1→2 + [η2D2(v2)n1→2 − η1D1(v1)n1→2]

+
[
ε0ε2

(
E2

tE2

)
· n1→2 − ε0ε1

(
E1

tE1

)
· n1→2

]
− 1

2

(
ε0ε2 E2

2 − ε0ε1 E2
1

)
n1→2 = σκn1→2. (4.9)
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The latter expression calls for two remarks.
(i) Equations (4.3) and (4.9) do not involve the electrostriction term of (4.2).

Consequently, the incompressible flow is independent of the electrostriction that
modifies the pressure field within each liquid phase, but without associated stress at
the jet boundary. In (4.3) the scattering force density thus appears as the only driving
force of the flow, which a posteriori justifies its introduction in (4.1).

(ii) The interfacial stress that results from the two last terms of the left-hand side of
(4.9) represents the radiation pressure in the formalism of continuum electrodynamics.
As shown in Appendix B, this interfacial stress is always normal to the interface
between two dielectrics, which we will therefore refer to as Π r̂ since r̂ identifies with
n1→2 in part B of the jet.

4.4. Decoupling the jet shape and the flow

In this section, we show that the equations governing the jet shape (4.9) and the flow
(4.3) can be partly decoupled.

As shown in figure 4, the jet shape and the light distribution of light within the
jet are both invariant by translation along z in part B. Consequently, we describe
the latter as a cylinder of circular cross-section and radius R1. This implies that
we can consider (i) the flow as a creeping incompressible steady parallel axial flow
invariant along z, vi = vi(r) ẑ (i =1, 2), and (ii) the propagation of light as the optical
wave guiding of an incident beam entering a step-index cylindrical fibre of circular
cross-section and radius R1.

Since in the investigated temperature range τ ∼ 25–75 m−1, the attenuation of the
beam intensity along the jet of typical length 200 µm is estimated to range between 0.5
and 1.5 %. Thus, the beam attenuation along part B due to light scattering is neglected.
The electromagnetic field and the scattering force density are therefore chosen to
be invariant along z and cylindrically symmetric, Ei = Ei(r) and f scatt

i = f scatt
i (r) ẑ

(i = 1, 2).
Following the above assumptions, the radial component of (4.3) satisfies ∂qi/∂r =0.

As a result, qi , hence pi , depend only on z. Then, the divergence of (4.3) gives
d2qi/dz2 = 0, which implies that the axial pseudo-pressure gradient is constant in
each phase, dqi/dz = Ci . Far away from the beam (i.e. r � w0) the liquid interface is
flat at z = 0 (see figure 1a) and the flow and the electromagnetic field are negligible.
Therefore, (4.9) gives q1(z = 0) = q2(z = 0) = p0, where p0 is the pressure at z = 0 in the
absence of laser illumination. One finally gets qi(z) = p0 + Ciz. Moreover, the velocity
field, the electromagnetic field and the jet radius, hence its curvature κ =R−1

1 , are
assumed to be invariant along z. Therefore, the force balance at the jet boundary
given by (4.9) implies that q1(z)−q2(z) is independent of z. Consequently, C1 = C2 = C

and q1(z) − q2(z) = 0 for all z.
Finally, the approximation of axial and cylindrically symmetric flow implies that

the balance of viscous forces at the interface is purely axial and, since n1→2 = r̂ for the
vertical cylindrical jet interface of radius R1, we have η2D2(v2)n1→2 − η1D1(v1)n1→2 =
[η2(dvz,2/dr)|r=R1

− η1(dvz,1/dr)|r=R1
] ẑ.

The above considerations lead to a useful simplified expression of the force balance
at the interface, whose axial and radial projections are, respectively,

η1

dvz,1

dr

∣∣∣
r=R1

= η2

dvz,2

dr

∣∣∣
r=R1

, (4.10)

Π =
σ

R1

. (4.11)
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On the one hand, the axial force balance (4.10) does not explicitly involve the
electromagnetic field, and the flow is therefore driven solely by the scattering force
density. On the other hand, (4.11) shows that the radius of the jet is independent of
the flow and is solely determined by the balance between the Laplace pressure and
the electromagnetic radiation pressure. In other words, the wave guiding properties
of the jet and the light propagation inside it are independent of the flow.

Summarizing, the observed invariance along z of part B of the jet results in a partial
decoupling between the beam propagation, the jet shape and the flow. Although the
jet shape and the beam propagation are strongly coupled through (4.11), they are
independent of the flow. In practice, the jet radius and the electromagnetic field
distribution in the core and cladding regions of the liquid optical fibre have to be
determined first by solving (4.11). Then, the scattering force density field and the
resulting flow inside and outside the jet can be determined.

5. Explaining the observed jet radius
5.1. Modelling the coupling between the beam propagation and the jet shape

Inside the jet of radius R1, the light can be considered to be guided by a step-index
liquid optical fibre with core radius R1. As shown above, this radius is a solution of
(4.11), which describes the static equilibrium of a liquid cylindrical interface under
the action of the Laplace pressure and of the electromagnetic radiation pressure. This
static equilibrium problem was originally solved (Brasselet & Delville 2008) in order
to explain the optical stabilization of large-aspect-ratio liquid bridges (Brasselet et al.
2008). Hereafter we first briefly recall the main features of the model presented in
detail in Brasselet & Delville (2008). Then, we successfully compare the measured jet
radii to their values predicted using this model.

In order to determine the solutions of (4.11), we assume the jet to be a perfect
cylinder of radius R1 (see figure 5a), thereby neglecting part A of the jet, whose
length is indeed short compared to the Rayleigh length of the beam, πw2

0/λ� 100 µm.
Consequently, the situation corresponds to an incident Gaussian beam with waist
w0 focused at z = 0 at the entrance of a step-index fibre of radius R1 with core and
cladding refractive indices n1 and n2, respectively, as illustrated in figure 5(a). The
electromagnetic field is thus expressed as a linear combination of only the propagating
guided modes of a step-index dielectric waveguide, i.e. we exclude the evanescent and
non-guided modes (Snyder & Love 1983) that are not invariant along z. Since the
incident Gaussian beam is cylindrically symmetric and linearly polarized (say along
x̂), only the guided modes having the same symmetry and polarization are considered
(in the following, they are indexed by the integer m � 1). In the limit of weak guiding,
(n1–n2) � n1, an assumption that is well satisfied in our experiments, the complex
electric field of the transverse component of the mode m is expressed as (Snyder &
Love 1983)

E(m)
⊥ = E

(m)
0 R(m)(r)ei(βmz−ωt) x̂, (5.1)

where E
(m)
0 is its amplitude and R(m)(r) its r-dependent spatial modulation given by

Rm(r) =

⎧⎪⎪⎨
⎪⎪⎩

J0(κmr)

J0(κmR1)
if r � R1,

K0(γmr)

K0(γmR1)
if r � R1,

(5.2)
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Figure 5. (a) Sketch of the simplified geometry assumed to describe the beam injection into
the jet that acts as a liquid optical waveguide. (b–g) Solid, black (resp. grey) curves represent
the calculated stable (resp. unstable) jet diameter d rescaled by the beam waist w0 = 3.47 µm as
function of the beam power P for �T = 1 (b), 2 (c), 4 (d ), 8 (e), 12 (f ) and 15 K (g). Symbols:
measured jet diameter.

where Jn and Kn are, respectively, the Bessel function of the first kind and the
modified Bessel function of the second kind. The wavenumbers κm and γm are the
mth roots of the characteristic equation

κm

J1(κmR1)

J0(κmR1)
= γm

K1(γmR1)

K0(γmR1)
, (5.3)

with (κmR1)
2 + (γmR1)

2 = k2
0R

2
1(n

2
1 − n2

2), where k0 = 2π/λ0. In addition, ω is the
wave pulsation and βm the propagation constant such that βm = (n2

1k
2
0 − κ2

m)1/2 =
(γ 2

m − n2
2k

2
0)

1/2.
For given values of n1, n2 and λ0, the number of roots (κm, γm) of (5.3), hence the

number of guided modes that propagates in the waveguide, depends on R1. Below
a threshold radius of the order of 1 µm under our experimental conditions, a single
guided mode propagates along the waveguide, the mode m =1. Such a monomodal
behaviour is only valid for R1 < R

(2)
1 , where R

(2)
1 is the cutoff radius above which the

mode m =2 appears. Beyond R
(2)
1 , the guided propagation is therefore multi-modal

and the number of propagating guided modes increases with R1. The respective
contribution of each of these modes to the total field inside the jet is determined in
practice by the fact that the guided modes constitute an orthogonal basis of the space
of the guided propagating fields.

As shown in Appendix B, the radiation pressure exerted on the interface has the
following expression:

Π =
1

4
ε0

(
n2

1 − n2
2

)(
|Et,1|2 +

n2
1

n2
2

|En,1|2
)

, (5.4)

where En,1 = (E1 · n1→2)n1→2 and Et,1 = E1 × n1→2, and where the fields are evaluated
along the interface. Given the linear polarization along x̂ of the excited guided
modes propagating along the jet, the radiation pressure depends on the azimuth θ .
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This implies that, strictly speaking, the jet cross-section is not circular. However,
we notice that Π = ε0(n

2
1 − n2

2)/4|E1|2[1 + O((n1 − n2)/n1)] with n1 − n2 � n1 and

|E1|2 � |
∑

m E(m)
⊥ |2(r =R1), which is independent of θ . Consequently, the azimuthal

dependence of Π can be safely neglected in the weakly guiding regime.
When the propagation is multi-modal, interferences between the propagating guided

modes, which have different propagation constants, may lead to a z-dependent
radiation pressure. This would break the z-invariance assumption. However, the
experiments reported in Brasselet et al. (2008), although corresponding to the multi-
mode regime, were successfully described by neglecting such possible interference
effects. Therefore, discarding the interferences between the modes, i.e. writing
|
∑

m E(m)
⊥ |2 =

∑
m |E(m)

⊥ |2, we have (Brasselet & Delville 2008):

Π = P4(n1 − n2)

π2w2
0R

4
1c

∑
m

[
J 2

1 (κmR1)

J 2
0 (κmR1)

+
K2

1 (γmR1)

K2
0 (γmR1)

]−2 ∣∣∣∣
∫ ∞

0

Rm(r)e−r2/w2
0 2πr dr

∣∣∣∣
2

. (5.5)

Nevertheless, as justified in the next subsection, our experiments correspond to the
monomodal propagation of light and weakly guiding approximation. This validates
the use of (5.5).

An experimental jet radius is a mechanically stable solution of (4.11) using (5.5),
i.e. a root of (4.11), labelled as R1,eq , for which

∂Π

∂R1

∣∣∣∣
P

(R1 = R1,eq ) <
∂

∂R1

(
σ

R1

)∣∣∣∣
P

(R1 = R1,eq ) = − σ

R2
1,eq

. (5.6)

The solutions of (4.11) that correspond to our experiments are plotted in figure 5(b–g),
where black and grey curves refer to stable and unstable solutions, respectively.

Notice that the condition of mechanical stability of the jet against any homogeneous
fluctuation of R1 all along the jet (5.6) implies stability against varicose shape
perturbation of any wavenumber qv , i.e. the suppression of the Rayleigh–Plateau
instability. This can be shown by considering the simplified problem of the stability
of a liquid jet with free surface and inviscid dynamics, and by following the linear
stability analysis performed by Marr-Lyon et al. (2001). For this purpose, let us
consider infinitesimal sinusoidal disturbances of R1, δR1(z), and of pressure of the
phase 1, δp1, with wavenumber qv . In addition, we assume the corresponding variation
of the guided electromagnetic field along the deformed jet to be adiabatic (i.e. power-
preserving). Then the linearization of (4.9) with p2 = p0 and η1 = η2 = 0 leads to
δp1 = Υ (qv)δR1 with Υ (qv) = −σ/R2

1, eq − ∂Π/∂R1|P(R1, eq ) + σq2
v . Since the condition

(5.6) for optical stabilization of a jet corresponds to Υ (0) > 0, and since Υ (qv) >Υ (0)
∀qv > 0, one has Υ (qv) > 0 ∀qv > 0. This inequality means that a pressure difference
builds up between the bulges and the constrictions of the jet. This pressure difference
drives a flow that leads to the release of the bulges for any qv . Consequently, stability
against varicose disturbance of any wavenumber is achieved. Considering the complete
problem of two phases with finite viscosities does not alter this conclusion (Johns &
Narayanan 2002). Noticeably, the jet formation mechanism employed here intrinsically
ensures its overall stability against varicose perturbations.

5.2. Comparison between model and experiment

As shown in figure 5(b–g), the jet diameter d is typically single-valued at low power
whereas it is multi-valued at high power. These predictions are compared with the
experimental diameter of part B of the observed dripping jets as a function of the
incident beam power P for the same temperatures; see the open circles in figure 5(b–g).
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Figure 6. Global representation of the variations of the jet diameter d versus P and �T .
Solid black curves: predicted variations of d �T βmodel , βmodel = 0.85 versus P restricted to the
first stable branches only for �T = 1, 2, 4, 8, 12 and 15 K and w0 = 3.47 µm. Solid grey curve:
best power-law fit suggesting an empirical scaling law d ∼ �T −βmodel Pδmodel , δmodel = 0.69. Open
symbols: measured variations of d �T βmodel versus P.

Although the overall behaviour of the measured diameters is more noisy than in the
case of liquid bridges (Brasselet et al. 2008), the experimental data clearly correspond
to the stable branch of smallest diameters (hereafter called the ‘first stable branch’).
This is true even in the range of P for which d(P) is predicted to be multi-stable, as
in figure 5(d, g). We believe that the observed noisy data could be attributed to the
feedback of the hydrodynamics associated with the jet unsteadiness (part C of the
jet) on the jet diameter. For this reason, the following procedure has been adopted
for evaluation of the overall agreement between theory and experiment.

First, we retain the first stable branch of d(P) for each temperature and fit them
with an empirical power law of the form Amodel�T −βmodel Pδmodel , where Amodel , βmodel

and δmodel are the adjustable parameters. The best fit corresponds to βmodel = 0.85 and
δmodel = 0.69. Then, the experimental and theoretical quantities d �T βmodel are plotted
versus P, as shown in figure 6, where the grey curve refers to the best power-law fit.
An overall satisfactory agreement between experiment and model is found.

This demonstrates that the diameter of part B of the jet actually obeys a model of
cylindrical step-index optical waveguide of circular cross-section and whose diameter
is solely determined by the radiation pressure of the guided beam propagating along
it. The scattering force density field and the flow can now be determined from the
knowledge of the electromagnetic field distribution inferred by the light propagation
model.

6. Model of flow induced by the scattering force density
6.1. Boundary conditions and flow rate constraint

The flow in phases 1 and 2 is obtained by solving (4.3), which requires four independent
constraints since we are dealing with a set of two second-order differential equations.
These constraints are determined from the following considerations.

(i) Continuity of the tangential velocity at the interface,

vz,1(r = R1) = vz,2(r = R1). (6.1)

(ii) Continuity of the shear stress at the interface, which is given by (4.10).
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(iii) No-slip condition at the cell sidewalls. Since the horizontal cross-section of
the sample cell is rectangular, this condition is incompatible with a velocity field
of cylindrical symmetry. However, as said in § 3, a suitable observation of the jet is
done by forming it close to a side window, typically ∼50 µm. Therefore, we introduce
an effective outer radius R2 at which a no-slip boundary condition of cylindrical
symmetry can be imposed on the flow,

vz,2(r = R2) = 0. (6.2)

It should be kept in mind that the value of such an effective outer radius R2 of the flow
may range from 50 µm up to the typical dimension of the horizontal cross-section
of the cell, i.e. 1 cm. Moreover, this value can not be deduced from experimental
considerations. However, it is well known that the dependence on the outer diameter
of the flow characteristics has a logarithmic behaviour and can therefore be neglected
(Thouvenel-Romans, van Saarloos & Steinbock 2004).

(iv) The last constraint is found by noting that the net axial flow of the outer fluid,
Q2, is zero,

Q2 =

∫ R2

R1

2πrvz,2(r) dr = 0. (6.3)

We notice that, since the droplets emitted by the jet tip first sink into the lower
phase as they are transported by the bulk flow and then rise up to the interface by
buoyancy, the net flow of the inner fluid is zero too. However, the net flow rate Q1 of
the inner fluid across any cross-section of the jet,

Q1 =

∫ R1

0

vz,1(r)2πr dr, (6.4)

is non-zero and its value corresponds to the mean dripping flow rate.

6.2. Exact determination of the flow

To ease the determination of the flow, the corresponding equations are made
dimensionless owing to the following procedure, which consists in the introduction of
characteristic length, scattering force densities, velocity and axial pressure gradient.

(i) The jet radius R1 is chosen as the characteristic length scale and we define the
reduced length r̃ = r/R1 and wavenumbers κ̃ = κ1R1 and γ̃ = γ1R1.

(ii) The scattering force density in each phase is written as f scatt
1 = F1J

2
0 (κ̃ r̃) ẑ and

f scatt
2 = F2K

2
0 (γ̃ r̃) ẑ, where F1,2 are obtained combining (4.6), (5.1) and (5.2).

(iii) The characteristic velocity is chosen as the Poiseuille characteristic velocity in
phase 1, η1/F1R

2
1 , and we define the reduced velocities ṽz,i = η1vz,i/F1R

2
1 (i =1, 2).

(iv) The characteristic axial pressure gradient is chosen as the scattering force
density in the phase 1, F1, and we define the reduced axial pressure gradient ψ = C/F1.

On the one hand the velocity field in phase 1 is obtained by solving (4.3) with i =1
(omitting the tildes in the following),

∂

∂r

(
r
∂vz,1

∂r

)
= ψr − rJ 2

0 (κr). (6.5)

Since the velocity is finite on the axis, its solution is

vz,1 =
ψ

4

(
r2 − r2

1

)
− 1

4

{
r2

[
J 2

0 (κr) + 2J 2
1 (κr) − J0(κr)J2(κr)

]
− r2

1

[
J 2

0 (κr1) + 2J 2
1 (κr1) − J0(κr1)J2(κr1)

]}
, (6.6)
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where r1 is an integration constant. On the other hand, the velocity field in phase 2
is obtained by solving (4.3) with i =2,

∂

∂r

(
r
∂vz,2

∂r

)
= ψµr − µζrK2

0 (γ r), (6.7)

where µ = η1/η2 and ζ =F2/F1. Its solution is

vz,2 =
ψµ

2

[
1

2
(r2 − r ′2

1) − r ′2
0 ln

(
|r/r ′

1|
)]

− µζ

2

{
−r ′2

0

(
K2

0 (γ r ′
0) − K2

1 (γ r ′
0)

)
ln

(
|r/r ′

1|
)

+
1

2

[
r2

(
K2

0 (γ r) − 2K2
1 (γ r)

+ K0(γ r)K2(γ r)) − r ′2
1

(
K2

0 (γ r ′
1) − 2K2

1 (γ r ′
1) + K0(γ r ′

1)K2(γ r ′
1)

)]}
, (6.8)

where r ′
0, r ′

1 are two additional integration constants.
The four unknown constants ψ , r1, r ′

0 and r ′
1 are determined by the set of four

coupled nonlinear equations that result from the three boundary conditions and
the zero mean outer flow constraint. Indeed, (6.1), (4.10), (6.2) and (6.3) can be,
respectively, expressed as

0 =
ψ

4

(
1 − r2

1

)
− 1

4

[
J 2

0 (κ) + 2J 2
1 (κ) − J0(κ)J2(κ) − r2

1

(
J 2

0 (κr1) + 2J 2
1 (κr1)

− J0(κr1)J2(κr1)
)]

− ψµ

2

[
1

2

(
1 − r ′2

1

)
+ r ′2

0 ln(|r ′
1|)

]
+

µζ

2

{
r ′2

0

(
K2

0 (γ r ′
0)

− K2
1 (γ r ′

0)
)
ln(|r ′

1|)1
2

[
K2

0 (γ ) − 2K2
1 (γ ) + K0(γ )K2(γ ) − r ′2

1

(
K2

0 (γ r ′
1)

− 2K2
1 (γ r ′

1) + K0(γ r ′
1)K2(γ r ′

1)
)]}

, (6.9)

0 = ψr ′2
0 −

[
J 2

0 (κ) + J 2
1 (κ)

]
+ ζ

[
K2

0 (γ ) − K2
1 (γ ) − r ′2

0

(
K2

0 (γ r ′
0) − K2

1 (γ r ′
0)

)]
, (6.10)

0 = ψ
[

1
2

(
ρ2 − r ′2

1

)
− r ′2

0 ln(|ρ/r ′
1|)

]
− ζ

{
−r ′2

0

(
K2

0 (γ r ′
0) − K2

1 (γ r ′
0)

)
ln(|ρ/r ′

1|)
+ 1

2

[
ρ2

(
K2

0 (γρ) − 2K2
1 (γρ) + K0(γρ)K2(γρ)

)
− r ′2
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(
K2

0 (γ r ′
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1 (γ r ′
1) + K0(γ r ′

1)K2(γ r ′
1)

) ]}
, (6.11)

0 = ψ

{
1

4
(ρ4 − 1) − r ′2

1

2
(ρ2 − 1) − r ′

0

[
ρ2 ln

(
|ρ/r ′

1|
)
ln(|r ′

1|) − 1

2
(ρ2 − 1)

]}

+ ζ r ′2
0

(
K2

0 (γ r ′
0) − K1(γ r ′

0)
) [

ρ2 ln(|ρ/r ′
1|) + ln(|r ′

1|) − 1

2
(ρ2 − 1)

]

− ζ (I1 + I2 − 2I3) +
ζ

2
r ′2

1

(
K2

0 (γ r ′
1) − 2K2

1 (γ r ′
1) + K0(γ r ′

1)K2(γ r ′
1)

)
(ρ2 − 1),

(6.12)

where ρ = R2/R1, I1 =
∫ ρ

1
r3K2

0 (γ r) dr, I2 =
∫ ρ

1
r3K0(γ r)K2(γ r) dr, I3 =

∫ ρ

1
K2

1 (γ r) dr .

6.3. Numerical resolution of (6.9)–(6.12)

The system of four coupled nonlinear equations (6.9)–(6.12) is solved numerically for
each of the experimentally investigated temperatures, for w0 = 3.47 µm, R2/R1 = 50
and a range of power that corresponds to the first stable branch for the jet
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Figure 7. Dimensionless velocity profile computed for �T =15K, P = 1 W, w0 = 3.47 µm,
and effective cell diameter R2 = 50R1. (a) Overall profile. (b) Close-up of the vicinity of the jet
axis. The continuity of the shear stress at the interface is satisfied through the slope jump of
the velocity profile at r = R1 from phase 1 (grey solid curve in phase 1, extended as a dashed
grey straight line in phase 2 as a guide for the eye) to phase 2 (black solid curve in phase 2,
extended as a dashed black straight line in phase 1) due to the viscosity contrast between
phases 1 and 2.

diameter, according to the following procedure. We first introduce the vector of
unknowns x = (ψ, r1, r

′
0, r

′
1) and rewrite (6.9)–(6.12) as F(x) = 0. The zeros of F are

then found using a standard Newton–Raphson method, which is an efficient way
to obtain solutions in the investigated range of parameters. The accuracy of the
results is such that Q2 = 0 up to a 10−8 relative error with respect to Q1, namely
Q2/Q1 < 10−8 is always satisfied. Notice that, although the dimensionless flow is
explicitly independent of P and of w0, it actually depends on these quantities through
the jet radius R1(P, T , w0). For ease of numerical implementation of (6.9)–(6.12) we
chose R2/R1 = 50. Given the range of experimental variations of R1, this corresponds
to R2 > 50 µm, i.e. to a realistic value for R2, see § 6.1. We checked that, as expected
(Thouvenel-Romans et al. 2004), the dependence of Q1 on R2 is logarithmic in the
R2/R1 � 1 limit.

6.4. Predicted velocity profiles and flow rate

A typical dimensionless velocity profile computed according to this model is displayed
in figure 7 for �T = 15 K and P = 1 W. The constraint of zero mean flow in phase 2
results in a counter flow in phase 2 away from the beam. The velocity actually
vanishes at the outer flow boundary. The continuity of the velocity and of the shear
stress at the interface is satisfied, as shown in figure 7(b), through respectively the
continuity of the velocity profile at r = R1 and its slope jump from phase 1 (grey solid
curve) to phase 2 (black solid curve) due to the viscosity contrast between phases 1
and 2.

Once the flow has been determined, the associated jetting flow rate Q1 is computed
using as input parameter for (6.6) only the first stable branch of solution for R1(P)
given by the optical liquid fibre model discussed in § 5. The predicted variations of Q1

versus P for T − Tc = 1, 2, 4, 8, 12 and 15 K and w0 = 3.47 µm are shown in figure 8.
As expected, since only the first stable branch of R1(P) has been considered, Q1 is a
continuous and increasing function of P. For the experimentally investigated ranges
of P, Q1 is predicted to vary between 2 × 101 and 5 × 102 µm3 s−1.

The model can now be compared to the experimental measurements of Q1.
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Figure 8. Curves: calculated dripping flow rate Q1 as a function of P for each of the
experimentally investigated temperatures that corresponds to the first stable branch of R1(P)
only (see figure 5). Symbols: experimental data.

7. Flow rate measurements and their comparison with the model
7.1. Principle of the flow measurements

Once a steadily emitting jet has been established, a movie of its dripping tip is
acquired using a CCD video camera working at 25 fps. A typical series of pictures is
shown in figure 9(a–d). The size of the emitted droplets is always comparable to the
jet diameter. Their ellipsoidal shape is due to the stretching action of the radiation
pressure of the beam emerging from the jet (Zhang & Chang 1988). Once emitted,
despite buoyancy, a droplet is transported downwards by the bulk flow and by the
scattering force exerted on it.

In agreement with the observations, we find that the amplitude �u of the relative
velocity of a drop with respect to the surrounding continuous phase that results
from the balance of buoyancy and Stokes drag, −�u ẑ, is much smaller than the
amplitude u of the observed sinking velocity of the drop transported by the light
scattering induced flow, u ẑ. Indeed, considering spherical droplets of radius R, we
have �u � (2/9)(ρ2 − ρ1)gR2/η2, where g is the acceleration of gravity. This gives
�u � 3 µms−1 for �T = 2 K and R = 5 µm, whereas U � 75 µm · s−1 (see figure 9).

Quantitatively, a given video sequence is analysed in the following way. Whenever
a droplet is emitted, its volume V is measured by fitting its shape to an ellipse of
major axis a and minor axis b (see figure 9e), namely V =(4/3)πab2. A histogram of
the droplet volumes measured over a 250 s duration is shown in figure 9(f), showing
a rather broad distribution. Thus Q1 is defined as the total volume of a few tens of
droplets divided by the corresponding duration of time.

Notice that the value of the Reynolds number computed using w0 as the
characteristic diameter of the jet and the measured velocity u is Re � 3 × 10−4. This
justifies a posteriori the assumption of creeping flow made throughout the model.

7.2. Comparison with the model

In figure 8, the variation in the measured dripping flow rate Q1 versus P is
superimposed on their prediction using the first stable branches of the R1(P) laws
as the input jet geometry. Satisfactory overall agreement between experiments and
the model is observed, regarding both trends and orders of magnitudes. However, we
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Figure 9. (a–d ) Series of pictures of the dripping jet tip at �T = 2 K, P = 320 mW,
w0 = 3.47 µm taken at (a) 0 s, (b) 40 ms, (c) 280 ms and (d ) 600ms. (e) Zoom of picture
(d ) showing the superimposed best elliptic fit of droplet 3 used to determine its volume. (f )
Histogram of the drop volumes measured over a 250 s duration at T − Tc = 2 K, P = 200 mW,
w0 = 3.47 µm. Solid vertical line (resp. dashed vertical lines) marks the mean value, 278 µm,
(resp. the standard deviation, 75 µm) of the volume distribution.

notice that flow rates are theoretically overestimated at small �T and underestimated
at large �T . In particular, we notice steeper than predicted variations of Q1 at
low P, especially at �T = 15 K. We attribute this behaviour to the increasing relative
importance of buoyancy compared to the scattering force as a function of �T . In fact,
we experimentally observed that buoyancy impedes the detachment of the droplets
and their advection by the bulk flow for the larger values of �T .

As was done for the jet diameter study, a global representation is useful in order
to gauge the overall compatibility between the model and the experimental data. For
this purpose, the theoretical Q1(P) curves shown in figure 8 have been fitted using
an empirical power law of the form Amodel�T −βmodel Pδmodel , where Amodel , βmodel and
δmodel are adjustable parameters. The best fit gives βmodel = 2.44 and δmodel = 2.28. The
quantity Q1 �T βmodel versus P is then plotted for both the predicted and measured flow
rates in figure 10, where the grey curve corresponds to the best power-law fit of the
model. Such a comparison between experimental and theoretical scaling behaviours
calls for four remarks.

(i) The overall agreement between experiment and model is satisfactory regarding
trends and orders of magnitudes. This demonstrates the relevance of the model.

(ii) Both the predicted and measured dripping flow rates can be accurately
described by a scaling law for the variables P and �T .

(iii) The measured flow rates are shown to obey a power law in P with an exponent
that is larger than its predicted value. This observation is confirmed by the values
of the exponents βexp = 1.97 and δexp = 2.64 of the best power-law fit of the form
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Figure 10. Global representation of the predicted and measured dripping flow rate Q1 versus
�T and P. Solid black curves: the predicted quantity Q1 �T βmodel , βmodel = 2.44 versus P.
Solid grey line: best power-law fit suggesting an empirical scaling law satisfied by the model
Q1 ∝ �T βmodel Pδmodel , δmodel = 2.28. Symbols: measured Q1 �T βmodel versus P.

Aexp�T −βexp Pδexp of the whole set of experimental data, which are found to differ
from βmodel and δmodel by 21 and 15 %, respectively.

(iv) The experimental data Q1 �T βmodel versus P is strikingly less noisy than the
data d �T βmodel versus P shown in figure 6. This demonstrates that Q1, which is
the result of a large-scale flow and is defined as a time-averaged quantity, is weakly
sensitive to the spatiotemporal fluctuations of d along the jet.

7.3. Discussion

The observed (resp. predicted) nonlinear dependence of Q1 versus the light power P,
Q1 ∝ P2.64 (resp. Q1 ∝ P2.28) is unusual for creeping flows, in particular considering
the apparent analogy between this flow and a Poiseuille flow. This is especially true
when comparing our situation with a Poiseuille flow in a tube of fixed diameter
with liquid walls (Thouvenel-Romans et al. 2004). This observed genuine behaviour
is reminiscent of the power dependence of the tube diameter. Recalling that the
Poiseuille flow rate is proportional to the fourth power of the tube radius and that
we found R1 ∝ P0.69, one would expect Q1 ∝ R4

1P ∝ P3.76. Such a naive scaling
law obviously differs from the observed and predicted ones. This is is due to the
combination of several effects. First, the driving force density field is inhomogeneous
(as opposed to the homogeneous pressure gradient driving the usual Poiseuille flow).
Moreover, the latter depends on the tube radius, which is self-adapted from the total
power of the guided light field.

We now analyse the possible reasons for the noticeable differences between the
absolute values of the measured and predicted flow rates and by the 21 % (resp.
15 %) difference between βmodel and βexp (resp. between γmodel and γexp).

(i) The quantitative agreement between the measured and predicted jet diameters
validates the use of the theoretical law R1(P, �T , w0) as an input for the flow model.
As predicted by Poiseuille’s law, Q1 is expected to depend in a power-law manner on
R1 with an exponent close to 4. Therefore, a given discrepancy between the theoretical
and experimental R1(P) laws may result in a larger one for Q1(P) laws.
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(ii) It is well known that gravity effects are important near second-order transitions.
Near the critical consolute line of the microemulsion, the distribution of droplets
is expected to become noticeably inhomogeneous in each phase as a result of
barodiffusion, i.e. the balance of sedimentation and diffusion. Since we use a
microemulsion in the two-phase regime, the balance of the chemical potentials
of the two phases at the interface implies that, in the vicinity of the interface,
the thermophysical properties of each phase are close to their equilibrium value
encountered in a homogeneous two-phase sample in the absence of gravity. Applying
to the microemulsion the model of barodiffusion developed for liquid binary mixtures,
we can express the steady-state gravity-induced vertical gradient of volume fraction
of droplets as dΦ/dz = ρ2

drop(ρ
−1
cont − ρ−1

drop)χ
−
T g, where g is the acceleration of gravity

(Kumar, Krishnamurty & Gopal 1983). Although dΦ/dz diverges at Tc, the relative
variation of Φ over the typical length L � 200 µm of the jet, L(dΦ/dz)/Φc, ranges
from 0.02 % for �T = 15 K to 0.2 % for �T = 2 K. Thus, gravity-induced droplet
stratification over the jet length can be neglected.

(iii) Electrostriction, thermodiffusion and absorption are known to be responsible
for the formation of transverse refractive index and turbidity gradients (Jean-Jean
et al. 1989). These phenomena may affect both the light propagation and its coupling
with the flow and jet shape. It has been shown that, for the relatively small beam
waist used in this study, electrostriction is the leading cause of the transverse variation
of the refractive index of the microemulsion (Jean-Jean et al. 1988). After a transient
of duration of the order of some hundreds of milliseconds (Freysz et al. 1994), the
refractive index is expected to increase along the beam axis by an amount δn such
that (Jean-Jean et al. 1989):

δn ∼
(

∂ε

∂Φ

∣∣∣∣
T

)2

χT

P
πn2cw2

0

. (7.1)

First, we consider the possible modification of the radiation pressure distribution
exerted on the jet boundary due to transverse gradients of refractive index. Although
δni/ni reaches a few per cent in each phase in our case, δn1 � δn2 at the jet boundary.
Consequently, the effect of electrostriction on the radiation pressure is negligible.
Second, it is known that the transverse dependence of δni is responsible for beam
self-focusing in the same kind of microemulsions (Freysz, Afifi & Ducasse 1985).
Self-focusing was reported to be reproducibly observed only when the sample was
confined in glass capillaries of 200 µm optical path (Jean-Jean et al. 1988). In our
case, where a millimetre-scale sample is used, we believe that the existing large scale
flows hinders the formation of transverse refractive index gradients driven by droplet
diffusion. Finally, Jean-Jean et al. (1989) estimated the transverse variation of the
turbidity of the microemulsion, δτ , to be

δτ ∼ ∂τ

∂T

∣∣∣∣
Φ

αabsP
πΛT

, (7.2)

where ΛT = 0.13 W m−1K−1 is the thermal conductivity of the microemulsion. Since
δτ/τ is less than 1 % in our case, its effect on the scattering force density field, hence
the bulk flow, can be neglected.

(iv) We notice that the predicted flow rate depends on the radius R2 of the
outer boundary. The influence of R2 can be retrieved from the analysis of a
simple situation where an uniform force density f is exerted on phase 1 only.
In that case, Q1 ∼ (πf R4

1/2η2) ln(R2/R1) for R2/R1 → ∞ (Thouvenel-Romans et al.
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2004). Thus, we expect Q1 to depend on R2 in a logarithmic manner. In practice,
R1 � 1 µm and R2 ranges from 50 µm to 1 cm. Since for ease of numerical
implementation we chose R2/R1 = 50, Q1 may be underestimated by a factor
ln(1 cm/1 µm)/ ln(50 µm/1 µm) � 2.3 at most. This factor depends on the value of
the effective radius of the outer boundary, which is difficult to estimate.

Finally, we stress that, in the present study, the thermophysical properties of the
microemulsion in the two-phase region have been estimated using scaling laws that
are accurate only asymptotically close to T = TC . This could also explain the observed
discrepancies between our model and the experiments. Moreover, we believe that any
improvement of the model that would break the z-invariance on which the description
of the flow and of the jet relies (for example, by including the effects of gravity or
of self-focusing) would be useless given the uncertainties on the thermophysical
properties of the microemulsion.

8. Conclusion and opening
In this study, we have reported on the first direct observation of a bulk flow induced

by light within a light-scattering fluid. This was done by observing the dripping of a
jet induced by the radiation pressure of light. The quantitative experimental analysis
was performed by the simultaneous measurement of the liquid jet diameter and the
dripping flow rate. We derived a model of light-driven creeping flow underlying
the dripping that accounts for the electromagnetic and hydrodynamics features of
the phenomenon. The agreement between the measurements and the model was
found to be satisfactory. This unambiguously demonstrates that the transfer of linear
momentum from light to a fluid through light scattering can drive a flow.

More generally, this mechanism of flow actuation based on the transfer of
momentum from a wave to liquids also underlies the well-known acoustic streaming
phenomenon, which relates to the steady flows induced by high-intensity acoustic
beams in sound-absorbing homogeneous liquids (Nyborg 1997). Of course, the
physical processes underlying the transfer of momentum differ from light-scattering
to sound-absorbing fluids. In the first case, the light–matter interaction is conservative
(elastic light scattering), i.e. without absorption of electromagnetic energy by matter,
hence without heating. In the latter case, since sound propagation in a homogeneous
fluid basically involves heat conduction and viscous diffusion of momentum, its
transfer of momentum (more precisely pseudo-momentum; see McIntyre 1981) to
the fluid is dissipative and induces heating. Nevertheless both these mechanisms of
momentum transfer result in the same kind of force density fields localized within the
beams and driving flows always oriented in the direction of propagation of the beams.
The reason why the heating induced in acoustic streaming experiments performed
in sound-absorbing homogeneous fluids is sustainable is that the sound velocity
is 105 times smaller than light velocity. Since the velocity of energy of the wave
approximately equals the ratio of the intensity to the momentum of a progressive
wave, for the same power attenuation per unit length of a progressive wave, the
rate of momentum transfer from the wave to the fluid per unit length is 105 larger
for sound than for light. Consequently, a noticeable flow purely induced by sound
absorption can be observed, whereas light absorption induces several side effects which
mask the effect of momentum transfer, for instance thermal convection. Nevertheless,
acoustic streaming involving sound scattering as the main cause of beam attenuation
is absolutely conceivable (as a matter of fact, the deformation of sound scattering
and absorbing, visco-elastic media by intense acoustic beams, that is, the analogue
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of streaming flows in fluids, is at the basis of the acoustic radiation pressure imaging
technique of biological tissues). This successful description of the light-induced jetting
as the result of both the scattering force density and of optical radiation pressure
raises the question of a possible combined action of acoustic streaming and acoustic
radiation pressure in the triggering of the acoustic fountain phenomenon (Wood &
Loomis 1927; Issenmann et al. 2008; Tan, Friend & Yeo 2009). Notice finally that
the same side effects as for light-scattering-induced flows, i.e. the longitudinal and
axial segregation of the scattering particles, are commonly used for acoustically
concentrating, sorting and sizing microparticles (Kuznetsova & Coakley 2004) and
for achieving ultrasonic four-wave mixing in suspensions (Simpson & Marston 1995).

Appendix A. Thermophysical properties of the microemulsion
A.1. Osmotic susceptibility

The osmotic susceptibility χT of a binary mixture is usually determined from the
measurement of its turbidity τ (i.e. the relative loss of intensity per unit propagation
length of a light wave propagating through the fluid due to light scattering) using:

τ =
π3

λ4
0

(
∂ε

∂Φ

∣∣∣∣
T

)2

kBT χT

(
2α2 + 2α + 1

α3
ln(1 + 2α) − 2

1 + α

α2

)
, (A 1)

where α = 2(kξ )2, k = 2πn/λ0, λ0 is the wavelength in vacuum of the incident light,
ξ the correlation length of the composition fluctuations within the binary mixture
(Ornstein & Zernike 1914; Puglielli & Ford 1970). (A 1) was historically first applied
to near-critical pure fluids (for pure fluids, Φ is replaced by the density ρ, which is
the order parameter of the liquid–gas phase transition). Puglielli & Ford (1970) found
their determination of the susceptibility in near-critical SF6 from their turbidity
measurements in quantitative agreement with previous measurements using other
techniques, validating (A 1) for pure fluids. Validation of (A 1) in several binary
mixtures was also performed, e.g. in the near-critical methanol-cyclohexane binary
mixture by Jacobs (1986).

Freysz (1990) measured the turbidity τ at three different wavelengths λ0 = 647.1,
530.9 and 476.2 nm of a one-phase near-critical microemulsion of composition (mass
fraction of toluene 71.4 %, of water 8.5 %, of sodium dodecyl sulphate 3.95 % and of
n-butanol 16.15 %) very close to the composition of the sample we used for our study,
in particular with the same water/SDS mass ratio, which determines the droplet size.
His measurements are reproduced in figure 11. Although the best fits of his turbidity
measurements by (A 1) demonstrated its applicability to near-critical microemulsions,
the amplitude χ+

T 0 of the critical scaling law (2.1) for χT in the one-phase region was
unfortunately not explicitly given.

In order to determine χ+
T 0, we fitted his turbidity measurements at each investigated

wavelength using (A 1) and the asymptotic critical scaling laws (2.2) and (2.1),
the fitting parameters given in Freysz (1990) and reproduced in table 1, n= 1.464,
γ = 1.24 = (2 − η)ν, η = 0.03 and ∂n/∂Φ|T = −0, 11 (Jean-Jean 1987). The best fits,
shown in figure 11, accurately describe the three experimental data sets. In the inset
of figure 11 we have plotted the variations of τ (|�T |/Tc)

γ /τexp as a function of
−�T = Tc − T . This quantity is expected to be constant and equal to χ+

T 0 when χT

actually obeys the asymptotic critical scaling law (2.1), i.e. sufficiently close to Tc. We
observe that this quantity is indeed constant close to Tc and takes close values for the
three investigated wavelengths. We deduce χ+

T 0 = 5.78 10−6 Pa−1 with a 10 % accuracy
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λ0 (nm) 647.1 530.9 476.2

ξ+
0 (Å) 44.2 38.4 42.5

Tc (◦C) 34.3 34.2 34.0

Table 1. Values of the parameters used for fitting the turbidity measurements
of Freysz (1990).
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Figure 11. Turbidity of the one-phase microemulsion as function of the distance to its critical
temperature for three optical wavelengths. Inset: variations of τ (|�T |/Tc)

γ /τexp as function of

of the distance to its critical temperature, which close to Tc identifies with the amplitude χ+
T 0

of the critical scaling law (2.1) for the osmotic suceptibility χT .

(see table 1 and figure 11). The numerical value of the universal amplitude ratio
ξ+
0 (�Φ0/2)2/3(kBTcχ

+
T 0)

−1/3 calculated using this value of χ+
T 0 and the above given

values of ξ+
0 and �Φ0 is 0.53, in close agreement with its average value 0.66 ± 0.1 for

binary mixtures (Beysens et al. 1982).

A.2. Viscosity

Freysz (1990) also measured the temperature dependence of the dynamic viscosity η

of a near-critical one-phase microemulsion sample of volume fraction of droplets
Φ =0.13 slightly larger than our sample (Φ = 0.11) in the temperature range
22.5–30 ◦C. He fitted his measurements using the following linear law:

η(Φ = 0.13, T ) = (1.934 − 0.019(T − 273.15)) · 10−3 Pa s. (A 2)

In order to deduce the viscosity of each phase of our two-phase near-critical
microemulsion at every temperature, we have to choose the most accurate law
describing the dependence of the viscosity of the microemulsion on the volume
fraction of droplets. For very dilute suspensions of solid spheres (Φ < 0.03), Einstein’s
law ηEinstein = ηcont (1 + 2.5Φ), where ηcont is the dynamic viscosity of the continuous
phase, is known to be accurate. For higher-volume fractions, it is necessary to add
to Einstein’s law a quadratic correction: ηBatchelor = ηEinstein + 6.2Φ2 (Batchelor’s law).
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Figure 12. Measured and extrapolated temperature dependence of the viscosity of the
microemulsion in the one-phase and two-phase regimes.

For a very diluted suspension of liquid droplets of viscosity ηd , Taylor established:
ηTaylor = ηcont (1 + ((ηcont + 2, 5ηd)/(ηcont + ηd))Φ). For very diluted suspensions of
droplets stabilized by surfactants covering their interface with the continuous phase
(emulsions), a law has been proposed by Danov (2001) involving all the interfacial
viscoelastic properties of the surfactant, which are hard to gather. On the other hand,
considering the relatively large volume fractions concerned in this study, we would
need a law for emulsions presenting at least a quadratic correction in Φ . In the
absence of such a law, we can compare the predictions of Einstein’s, Batchelor’s and
Taylor’s laws.

First, we infer the temperature dependence of the viscosity of the continuous phase
ηcont in the two-phase region (T >Tc) by extrapolating the empirical viscosity law
(A 2). The extrapolation is model-dependent:

ηcont (T ) =
η(Φ = 0.13, T )

1 + 2.5 × 0.13
using Einstein’s law, (A 3)

ηcont (T ) =
η(Φ = 0.13, T )

1 + 2.5 × 0.13 + 6.2 × 0.132
using Batchelor’s law, (A 4)

ηcont (T ) =
η(Φ = 0.13, T )

1 +
ηcont (T ) + 2, 5ηd(T )

ηcont (T ) + ηd(T )
× 0.13

using Taylor’s law. (A 5)

Since the droplets in the microemulsion are principally composed of water, we solve
(A 5) by using for ηd the tabulated temperature dependence of the viscosity of water
ηwater = exp(5.5263.105T −2 − 1685.3T −1 − 7.5881) (T in K) valid in the temperature
domain 20–50◦C (Weast 1971). Then, we determine the viscosity of the microemulsion
using the three laws and (2.3). The resulting variations of η(Φ = 0.11, T ) inferred using
the three laws are represented in figure 12 together with the measurements of Freysz
(1990). This comparison calls for two remarks. (i) The relative differences between
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the three laws are small, of order 10–15%. (ii) According to the difference between
Einstein’s and Batchelor’s laws, a relevant quadratic correction to Taylor’s law should
increase the viscosity contrast between the two phases. Moreover, Danov (2001) claims
that the behaviour of the viscosity of microemulsions is intermediate between solid
suspensions and droplets not covered by surfactants. For these reasons, we believe
that Einstein’s law should reasonably describe the actual viscosity of a two-phase
microemulsion. Finally, we stress that the flow should not critically depend on the
viscosity contrast between both phases.

Appendix B. Electromagnetic stress exerted at an interface between two
dielectrics: radiation pressure

The expression of the force balance at the interface (4.9) involves a contribution of
the electromagnetic field called radiation pressure. In this appendix, we demonstrate
that this interfacial stress of electromagnetic origin is actually normal to the interface
and is expressed as (5.4).

Noting Ei , i = 1, 2 the electric field in two dielectric media 1 and 2, we consider here
only the part T′em

i = ε0εi Ei
t Ei − ε0εi E2

i I/2, i = 1, 2 of the Maxwell stress tensor, the
other part (ε0ρ/2)(∂ε/∂ρ)|T E2I, called the electrostrictive term, that shows up through
the pseudo-pressures qi = pi − (ε0 E2

i ρi/2)(∂εi/∂ρi)|T , i = 1, 2 having no influence on
the flow under study. Considering the interface between these two media, defining
n1→2 as the unit vector normal to the interface at point M of the interface and
(α, β) as two orthogonal vectors lying in the plane tangent to the interface at point
M , (α, β, n1→2) constitute an orthogonal base of unit vectors associated with M .
Expressing the electric fields in this base as Ei = Eα,iα + Eβ,iβ + En,in1→2 and noting
Et,i = Eα,iα + Eβ,iβ , the components (Πα,i, Πβ,i, Πn,i) of the force Π i = (−1)iT′em

i n1→2

exerted on the interface by medium i can be expressed as follows:

Πα,i = (−1)iα ·
[
T′em

i n1→2

]
= (−1)iε0εiEα,iEn,i = (−1)iEα,iDn,i, (B 1)

Πβ,i = (−1)iβ ·
[
T′em

i n1→2

]
= (−1)iε0εiEβ,iEn,i = (−1)iEβ,iDn,i, (B 2)

Πn,i = (−1)in1→2 ·
[
T′em

i n1→2

]
= 1

2
(−1)iε0εi(E

2
n,i − E2

t,i), (B 3)

where Di = ε0εi Ei is the electric displacement vector. Since Maxwell’s equations imply
that Dn,1 = Dn,2 and Et,1 = Et,2, the components along α and β of the net force Π1+Π2

exerted on the interface are both zero. In contrast, its component along n1→2 = r̂ is

Πn,1 + Πn,2 = 1
2
ε0

(
(ε1 − ε2)E

2
t − ε1E

2
n,1 + ε2E

2
n,2

)
. (B 4)

Using εi = n2
i and the continuity of Dn across the interface, (B 4) becomes:

Π = Πn,1 + Πn,2 =
1

2
ε0

(
n2

1 − n2
2

) (
E2

t +
n2

1

n2
2

E2
n,1

)
. (B 5)

Once averaged over one period of oscillation of the monochromatic electric fields, it
becomes (5.4).
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Freysz, E. 1990 Etude des non linéarités optiques dans les mélanges liquides binaires critiques.
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Jean-Jean, B., Freysz, E., Ducasse, A. & Pouligny, B. 1988 Thermodiffusive and electrostrictive
optical nonlinearities in critical microemulsions. Europhys. Lett. 7 (3), 219–224.

Jean-Jean, B., Freysz, E., Ponton, A., Ducasse, A. & Pouligny, B. 1989 Nonlinear propagation
of Gaussian beams in binary critical liquid mixtures. Phys. Rev. A 39 (10), 5268–5279.

Johns, L. E. & Narayanan, R. 2002 Interfacial Instability . Springer.

Kaneta, T., Ishidzu, Y., Mishima, N. & Imasaka, T. 1997 Theory of optical chromatography. Anal.
Chem. 69, 2701–2709.

Kazaryan, M. A., Korotkov, N. P. & Zakharov, S. D. 1995 Hydrodynamic flows in suspensions
caused by powerful pulse-periodic light beams. Phys. Scr. 52, 678–679.

Kumar, A., Krishnamurty, H. R. & Gopal, E. S. R. 1983 Equilibrium critical phenomena in
binary liquid mixtures. Phys. Rep. 98 (2), 57–143.



306 R. Wunenburger and others

Kuznetsova, L. A. & Coakley, W. T. 2004 Microparticle concentration in short path length
ultrasonic resonators: roles of radiation pressure and acoustic streaming. J. Acoust. Soc. Am.
116, 1956–1966.

Landau, L., Lifshitz, E. & Pitayevski, L. 1984 Electrodynamics of Continuous Media , 2nd edn.
Butterworth Heinemann.

Marr-Lyon, M. J., Thiessen, D. B. & Marston, P. L. 2001 Passive stabilization of capillary bridges
in air with acoustic radiation pressure. Phys. Rev. Lett. pp. 2293–6.

McIntyre, M. E. 1981 On the ‘wave-momentum’ myth. J. Fluid Mech. 106, 331–347.

Mitani, S. & Sakai, K. 2002 Measurement of ultralow with a laser interface manipulation technique.
Phys. Rev. E 66, 031604.

Mitani, S. & Sakai, K. 2005 Observation of interfacial tension minima in oil-water-surfactant
systems with laser manipulation technique. Faraday Discuss. 129, 141–153.

Moldover, M. R. 1985 Interfacial tension of fluids near critical points and two-scale-factor
universality. Phys. Rev. A 31, 1022–1033.

Monjushiro, H., Takeuchi, K. & Watarai, H. 2002 Anomalous laser photophoretic behavior of
photo-absorbing organic droplets in water. Chem. Lett. pp. 788–789.

Nieto-Vesperinas, M., Chaumet, P. C. & Rahmani, A. 2009 Near-field photonic forces. Phil. Trans.
R. Soc. Lond. A 362, 719–737.

Nyborg, W. L. 1997 Acoustic streaming. In Nonlinear Acoustics (ed. M. F. Hamilton & D. T.
Blackstock), pp. 207–232. Academic.

Ornstein, L. S. & Zernike, F. 1914 Accidental deviation of density and opalescence at the critical
point of a single substance. Proc. Kon. Ned. Akad. Wetensch. 17, 793–806.

Ostrovskaya, G. V. 1988a Deformation of the free surface of a liquid under the pressure of light.
Part I. Theory. Sov. Phys. Tech. Phys. 33 (4), 465–468.

Ostrovskaya, G. V. 1988b Deformation of the free surface of a liquid under the pressure of light.
Part II. Experiment. Sov. Phys. Tech. Phys. 33 (4), 468–470.

Padgett, M., Molloy, J. & McGloin, D. 2009 Optical Tweezers: Methods and Applications . CRC.

Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. 2007
Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197–1216.

Puglielli, V. G. & Ford, N. C. 1970 Turbidity measurements in sf6 near its critical point. Phys.
Rev. Lett. 25 (3), 143–147.

Raco, R. J. 1968 Electrically supported column of liquid. Science 160, 311–312.

Rohatscheck, H. 1985 Direction, magnitude and causes of photophoretic forces. J. Aerosol. Sci. 16,
29–42.

Sakai, K., Mizumo, D. & Takagi, K. 2001 Measurement of liquid surface properties by laser-induced
surface deformation spectroscopy. Phys. Rev. E 63, 043602.

Sakai, K. & Yamamoto, Y. 2006 Electric field tweezers for characterization of liquid surface. Appl.
Phys. Lett. 89, 211911.

Savchenko, A. Yu., Tabiryan, N. V. & Zel’dovich, B. Ya. 1997 Transfer of momentum and torque
from a light beam to a liquid. Phys. Rev. E 56, 4773–4779.
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