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Abstract
We show that the mechanical effect of light on the orientational ordering of the crystalline axis
of a mesophase can be used to control the dynamics of the optical response of liquid crystal
infiltrated photonic structures. The demonstration is made using a one-dimensional periodic
structure whose periodicity is broken by the presence of a nematic liquid crystal defect layer. In
this study we report on output light polarization and/or intensity dynamics that depend on the
initial molecular ordering and incident light wavelength and intensity.

Keywords: liquid crystal infiltrated photonic structures, tunable photonic crystals, dynamical
optical response, nonlinear optics of liquid crystals

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Two decades ago, Yablonovitch [1] and John [2] independently
introduced the concept of photonic crystals, i.e. dielectric
systems with spatial periodicity of the refractive index, which
led to the formation of photonic bandgaps. The latter
correspond to wavevector ranges (hence implying direction
and frequency), for which light cannot propagate. Indeed,
this feature allows us to control the flow of light [3]
provided there are appropriate structured material properties.
To do so, the light itself offers practical solutions towards
high-resolution three-dimensional optical micro- and nano-
fabrication techniques [4]. Although being a necessary
first step, structured material is, however, not enough when
flexible optical data processing is envisaged, which requires
reconfigurable photonic crystals. To do so, linear or nonlinear
refractive index changes have appeared as a straightforward
solution that can be supplied by external fields of different
nature (e.g. thermal, electrical, or optical). Obviously, the

use of light itself is appealing since it naturally benefits from
the strong spatial confinement of the field inside the structure,
thereby enhancing the optical response and paving the way
towards all-optical photonic circuitry [5].

Among various nonlinear optical materials, the attractive-
ness of liquid crystals results from the genuine combination of
its ‘liquid’ and ‘crystalline’ features, which allow easy inte-
gration into photonic crystal micro-architectures and extreme
sensitivity to external fields at the same time. Such a possibility
has been thoroughly studied since the pioneering results of,
on the one hand, Busch and John, who proposed to use the
orientational ordering of the optical axis of liquid crystals in
order to tune the properties of photonic bandgaps [6], and, on
the other hand, Yoshino et al, who proposed to benefit from the
successive appearance of distinct mesophases in thermotropic
liquid crystals when temperature is changed [7]. However,
neither thermal nor electrical tuning of liquid crystals benefits
from the very nature of a photonic crystal, contrary to the use
of light itself to trigger refractive index changes.
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The large orientational optical nonlinearities of liquid
crystals [8, 9] can be fruitfully exploited to control the optical
response of a photonic structure via the light that propagates
inside it. Such an issue was addressed in previous works in the
simplest case of a one-dimensional dielectric structure in which
is embedded a pure or dye-doped nematic liquid crystal layer
with initial uniform alignment [10–13]. These works, however,
have only reported on static or transient light-induced changes.
More recently, rotational dynamics of the director (i.e. the unit
vector n that represents the local average molecular orientation
of a nematic) has also been experimentally demonstrated [14].

In this study, we theoretically demonstrate that optome-
chanical effects at the mesoscale can be used to control output
light polarization and/or intensity dynamics of liquid crystal
infiltrated photonic structures. First we introduce the system
in section 2.1 and the choice of two representative light–matter
interaction geometries is discussed in section 2.2. Then, the
optical threshold behavior is addressed in section 3. The all-
optical dynamical response of the photonic structures is studied
in section 4 and section 5 concludes the paper.

2. Background

2.1. Definitions

We choose a one-dimensional periodic structure made of
alternating layers of SiO2 and TiO2 with thicknesses 103 and
64 nm, respectively, which exhibits a bandgap in the visible
range between 500 and 720 nm. In all our simulations, a
uniformly aligned nematic liquid crystal defect layer with
thickness L = 5 μm is located in the central part of the
structure with five SiO2/TiO2 building blocks on each side (see
figure 1). Our choice for the defect layer thickness corresponds
to the obtainment of a few defect modes in the bandgap region
that are characterized by a free spectral range much larger than
the individual spectral linewidth (see later figure 4). Moreover,
note that the present theoretical framework for the optical
reorientation of liquid crystals neglects surface effects at the
film input/output facets. This prevents an accurate description
when the liquid crystal thickness is reduced to sub-micron
scale. Qualitative expectations, however, could be inferred
from the present study.

We consider two different kinds of initial uniform
alignment n0 for the director. Namely, the initial alignment is
either perpendicular (homeotropic anchoring, ‘H’) or parallel
(planar anchoring, ‘P’) to the nematic slab. Hence, n0 = ez or
n0 = ex , where (ex , ey, ez) is the Cartesian coordinate system,
as illustrated in figures 1(a) and (b), respectively. We consider
a nematic material with typical refractive indices n⊥ = 1.5
and n‖ = 1.7, where symbols (⊥, ‖) refer to directions
perpendicular and parallel to n, respectively. Moreover, we
used splay-to-bend and twist-to-bend ratios for the Frank
elastic constants K1/K3 = 2/3 and K2/K3 = 1/2 as typical
values. Note that these values of the material parameters are
chosen to be representative of common nematic liquid crystals
(for example, see [15]). In fact, none of our conclusions is
qualitatively altered when choosing the actual values of a given
material.

Figure 1. Definition of the homeotropic (a) and planar (b)
geometries. They consist of a one-dimensional multilayered structure
made of SiO2 and TiO2 in which is embedded a nematic liquid crystal
layer. The uniform spatial distribution of its optical axis at rest is
n0 = ez in the case H and n0 = ex in the case P. The excitation light
beam impinges at normal incidence onto the structures, k0 = k0ez ,
and the incident polarization state is set to circular in the case H,
Einc = E0(ex + iey)/

√
2, and to linear in the case P, Einc = E0ey .

The optical properties of these structures are calculated in
the plane wave approximation, therefore all variables depend
on coordinate z and time t only. The light propagation problem
is solved by using the Berreman 4 × 4 matrix approach [16]
and taking into account that, inside the nematic, the light
is coupled to the Euler–Lagrange equations that govern the
dynamics of the director [17]. We also introduce the reduced
spatial coordinate ξ = z/L and time τ = t/τH,P where
we defined the geometry-dependent characteristic times τH =
γ1L2/(π2 K3) [18, 19] and τP = γ1 L2/(π2 K2) [20], γ1 being
the rotational viscosity.

The director is represented by the usual spherical angles
� and � following n = (sin � cos �, sin � sin �, cos �). The
H and P geometries are characterized by different boundary
conditions for the director at ξ = 0 and ξ = 1. In the
homeotropic case, n(0, τ ) = n(1, τ ) = ez and the director
representation is

nH = (sin �H cos �H, sin �H sin �H, cos �H), (1)

with
�H(ξ, τ ) =

∑

m�1

�
(m)
H (τ ) sin(mπξ), (2)

�H(ξ, τ ) = �
(0)
H (τ ) +

∑

m�1

�
(m)
H (τ )

sin[(m + 1)πξ ]
sin(πξ)

, (3)

where m is an integer, whereas in the planar case the director
lies in the plane (x, y) with n(0, τ ) = n(1, τ ) = ex , hence

nP = (cos �P, sin �P, 0), (4)

with
�P(ξ, τ ) =

∑

m�1

�
(m)
P (τ ) sin(mπξ). (5)

In practice, we retain a large enough number of polar and
azimuthal modes (i.e. sums that appear in equations (2), (3),
(5) are truncated) in order to ensure accurate results, which is
done following previous works devoted to nematic slab alone
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Figure 2. H slab alone. Total phase delay �H (a) and director precession angular velocity 	 = d�
(0)

H /dτ (b) versus intensity for two different
nematic thicknesses L = pλ ( p = 5 and 10), where λ = λ0/n⊥ is the wavelength in the unperturbed nematic. Solid (dashed) curves refer to
stable (unstable) states. The gray region in (a) corresponds to the range of values explored during the quasi-periodic regime.

in the case H [18, 19] and P [20]. We introduce the (adiabatic)
total phase delay � between the extraordinary (e) and ordinary
(o) waves due to the nematic layer (which turns out to be a
measure of the reorientation associated with the polar degree
of freedom of the director). Again, distinction must be made
between H and P cases. In the homeotropic case

�H(τ ) = κ

∫ 1

0
[neff(ξ, τ ) − n⊥] dξ, (6)

with neff = n‖n⊥/(n2
‖ cos2 �H +n2

⊥ sin2 �H)1/2, κ = 2π L/λ0,
and λ0 is the incident wavelength in free space, whereas the
condition �P = π/2 in the planar case imposes a constant
phase delay

�P = κ(n‖ − n⊥). (7)

Finally, we define the reduced incident light intensities
as ρH = Iinc/IH in the homeotropic case, where Iinc is the
incident intensity and IH = 2π2cK3n2

‖/[(n2
‖ − n2

⊥)n⊥L2] is
the Fréedericksz threshold (i.e. the intensity above which the
initial director state n0 is unstable) for circularly polarized
light for a slab alone [17], whereas ρP = Iinc/IP with IP =
8π2cK2n‖(n‖ − n⊥)/[λ2(n‖ + n⊥)] in the planar case [20],
where c is the speed of light in free space.

2.2. Light–matter interaction geometries

A general feature of the optical reordering of liquid crystals is
its strong dependence on the light–matter interaction geometry,
namely the director field at rest and the incidence angle,
polarization, and intensity of the incident light field. Therefore
a preliminary analysis is performed for the H and P cases from
the knowledge of the reorientation dynamics for a nematic
slab alone (i.e. without periodic structure) in order to identify
situations that will potentially exhibit a dynamical optical
response.

Homeotropic case. The optical reordering of a homeotropic
nematic film has been intensively studied for normal or oblique
incidence and for a varied set of incident beam polarization

states, be it linear, elliptical, circular, or unpolarized. Various
static, periodic, quasi-periodic, and aperiodic reorientation
dynamics have been predicted and observed (see [8] for a
review). The circular polarization case at normal incidence is
a representative example for which periodic, quasi-periodic,
and chaotic rotations (see [21] and references therein) have
all been reported. Therefore, it seems reasonable to expect
dynamical behavior too when a periodic structure is at work.
However, the use of a thin nematic slab can be a crippling
drawback since the light-induced dynamical richness declines
as the thickness decreases. This is illustrated in figure 2 where
the phase delay �H, and the collective director precession
angular velocity, 	 = d�

(0)
H /dτ , are plotted as a function of the

reduced intensity in figures 2(a) and (b), respectively, for two
different thicknesses. It is known that these two parameters are
relevant when dealing with the optically induced reorientation
dynamics of nematic films [18, 19]. Indeed, the phase delay
is related to the characteristic director reorientation amplitude,
namely �H ∝ �2

H in the limit of small �H, whereas the angular
velocity is related to the azimuthal motion of the director.
Above a light intensity threshold, the initial director orientation
is unstable and �H �= 0. Then, polarization changes associated
with reorientation lead to light angular momentum deposition
into the liquid crystal. The director is therefore put into
rotation around the direction of propagation of the excitation
light, 	 �= 0 [22]. Moreover, above a secondary threshold,
the uniform rotation of the director can bifurcate towards a
non-uniform rotation regime [18] where director precession is
coupled to a nutation motion (i.e. 	 �= 0 with ∂�H/∂τ �= 0).
From figure 2, we see that such a precession-nutation regime
disappears below a typical cell thickness that corresponds to
L = 2–3 μm for typical wavelength λ0 = 600 nm. The
typical reorientation dynamics diagram observed for thick cells
(L ∼ 100 μm, see [18]) is thus qualitatively preserved in our
case, where L = 5 μm.

Planar case. The planar alignment geometry for nematics
at normal incidence has been much less studied than its
homeotropic counterpart. To our knowledge, this geometry
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Figure 3. P slab alone. Output reduced third Stokes parameter s3 versus intensity for three different nematic thicknesses that correspond to
�P/π = 0.5 (a), 0.8 (b), and 1.6 (c). Solid (dashed) curves refer to stable (unstable) states. The gray regions in (b) and (c) correspond to the
range of values explored during the oscillatory regime.

has only been considered in [23] and no further studies have
been performed on it during the past two decades. This might
be explained by a (twist) Fréedericksz transition threshold
predicted to be up to three orders of magnitude larger than the
homeotropic case, thus preventing experimental observation.
Moreover, the above-threshold director distortions have been
predicted to be static whatever the light intensity [23], hence
limiting the need for a deeper analysis. Nevertheless, very
recently, the planar geometry has attracted a renewal of interest
following a seemingly experimentally accessible intensity
threshold using a periodic structure [12].

In fact, the case of a planar slab alone was revisited in [20]
where it is rigorously demonstrated that the reorientation
threshold is significantly lower than previously predicted [23].
Moreover, a static distorted state is expected above the
reorientation threshold only for optically thin enough liquid
crystal layers, �P/π < 0.64 [20], whereas a dynamical regime
that takes place via a Hopf bifurcation is predicted otherwise,
which has been missed so far [23]. A secondary instability
(heteroclinic bifurcation), which eventually leads to a static
regime, has also been predicted to be associated (0.64 <

�P/π < 1), or not (�P/π > 1), with hysteresis behavior [20].
In order to summarize these results it is useful to introduce the
reduced third Stokes component [24], s3, at the output of the
nematic film. Indeed s3 = 0 in the absence of reorientation
since the linear incident polarization state is unaltered in that
case, whereas s3 �= 0 as soon as �P �= 0. Moreover, a time-
dependent director reorientation can be retrieved from output
polarization dynamics, hence ds3/dτ �= 0. Typical scenarios
when the reduced intensity is taken as the control parameter
are summarized in figure 3 for three representative optical
thicknesses that correspond to �P/π = 0.5 (a), 0.8 (b), and
1.6 (c).

Since L = 5 μm corresponds to �P/π ∼ 4 in the visible
range with the present choice of material parameters, a non-
trivial sequence of nonlinear reorientation dynamics is a priori
expected. Importantly, note that the chosen film thickness is
nevertheless thin enough to prevent the influence of stimulated

scattering, in contrast to thick cells where full polarization
conversion can be observed [25, 26]. Indeed, the latter
phenomenon is all the more important as the ratio � = L(n‖ −
n⊥)/λ0 between the thickness and the intensity modulation
grating period arising from the coherent superposition of
extraordinary and ordinary waves is large compared to unity.
Since � ∼ 2 in our case, the stimulated scattering can therefore
be neglected in our approach.

Finally, we further consider the case H under circularly
polarized excitation at normal incidence and the case P under
ordinary linearly polarized excitation at normal incidence, as
sketched in figures 1(a) and (b), respectively.

3. Spectrally modulated optomechanical efficiency

In both H and P cases, the incident beam polarization
corresponds to an ordinary wave for the nematic at rest and
the optical torque density exerted on n0 is thus zero. However,
the orientational state n = n0 is linearly unstable with respect
to fluctuations when the light intensity is high enough to
overcome the restoring elastic torque density that originates
from the cell walls, which defines the optical Fréedericksz
transition threshold [17]. The presence of the periodic structure
does not suppress the optical destabilization scenario, but
enriches it. Indeed, the reduced thresholds ρH,th (figure 4(a))
and ρP,th (figure 4(b)) strongly depend on the excitation
beam wavelength λ0 inside the bandgap, as already discussed
in detail in the homeotropic case [11, 13]. Namely, the
defect modes evidenced by sharp peaks in the transmission
spectrum TH (figure 4(c)) are associated to an enhanced
light confinement in the nematic defect layer that leads to
a significant reduction (up to several orders of magnitude)
of the required incident intensity to trigger the liquid crystal
reorientation (figure 4(a)).

In the planar case, a strongly modulated reorientation
threshold is observed too, as shown in (figure 4(b)), however,
its fine structure is more complex than its homeotropic
counterpart. Indeed the spectrum of ρP,th exhibits two

4



J. Opt. 12 (2010) 124006 A E Miroshnichenko et al

Figure 4. Reduced thresholds ρH,th (a) and ρP,th (b) and transmission spectra TH (c) and TP (d) at rest (n = n0). In (b), circle (square) symbols
refer to the ordinary (extraordinary) mode shown in (d).

Figure 5. Qualitative interpretation of the asymmetric resonance lineshape nearby an extraordinary defect mode in the planar geometry.
Elastic and optical torque densities exerted on the director in the presence of an orientational fluctuation are shown in (a) for a slab alone
whereas (b) and (c) illustrate the negative and positive feedback from the periodic structure for λ0 � λe

d and λ0 � λe
d, respectively.

sets of resonances with either symmetric (circle symbols in
figure 4(b)) or asymmetric (square symbols in figure 4(b))
lineshape that are related to the o- and e-defect mode
wavelengths λo

d and λe
d, respectively. Such a behavior is a

direct manifestation of the competing influence of the o- and
e-modes. On the one hand, symmetric resonance lineshapes
in the planar case are reminiscent of the incident ordinary
polarized light field enhancement in the nematic defect layer
when λ0 ≈ λo

d, as in the homeotropic case. On the other
hand, the origin of the asymmetric resonance lineshapes when
λ0 ≈ λe

d can be qualitatively grasped by considering a
fluctuation around the initial state n0 for a planar slab alone,
see figure 5(a). The elastic torque density (Γel) driven by the
cell walls tends to restore the director perturbation whereas
the subsequent polarization changes (see typical polarization
state inside the liquid crystal labeled as ELC in figure 5) are

associated to a spin angular momentum deposition [22], hence
an optical torque density (Γopt), that tends to increase the initial
amplitude of the fluctuation, as illustrated in figure 5(a). The
influence of the periodic structure is addressed by noting that
(i) the phase of the o-wave is almost constant in the vicinity of
an e-defect mode (except when λo

d ≈ λe
d) and (ii) a π phase

shift is experienced by the e-wave when the incident beam
wavelength explores the resonance linewidth. Therefore, the
sign of the optical feedback (δΓopt) is either negative or positive
depending on the resonance side, as shown in figures 5(b)
and (c). We note here the analogy with the Fano resonance
arising from the interference of resonant and non-resonant
scattering waves, which is characterized by an asymmetric
lineshape [27]. Indeed, a resonantly excited e-wave leads to
constructive and destructive interference with an o-wave in the
vicinity of an e-defect mode. When λo

d ≈ λe
d (i.e. λ0 ≈ 673 nm,
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Figure 6. Spectrally modulated nature of the reorientation transition
that corresponds to a stationary bifurcation except in the vicinity of
e-defect modes, which is identified by gray regions, where a Hopf
bifurcation takes place.

Figure 7. Director regimes in the H (a) and P (b) geometries.
Uniform precession of the director around the z axis is found in the
case H whereas either static distorted states (see markers) or director
oscillation in the (x, y) plane are predicted in the case P.

see arrow in figure 4(d)), the dephasing associated with the
defect modes between the o- and e-waves is even smaller than
λo

d and is close to λe
d, which eventually leads to a symmetric

resonance lineshape for ρP,th (see arrow in figure 4(b)).
The nature of the optical reordering transition also

depends on the excitation beam wavelength. In the
homeotropic case, the order of the orientational instability
can be either first-or second-order depending on the detuning
λ0 − λo

d between the pump wavelength and the nearest defect
mode λo

d, as previously discussed for an identical structure
with linearly polarized excitation [11, 13], which is a general
result for homeotropic films inside a resonator under linearly
polarized light [28, 29]. Indeed, the transition is first-order
for positive detuning whereas it is second-order for negative
detuning (see later figures 8(a) and (b) in section 4). Such
behavior is therefore independent of the presence or not of
an intrinsic optical bistability (i.e. for the nematic slab alone)
since linearly and circularly polarized excitations are related to
second- and first-order transitions, respectively. In the planar
case, we also find that the order of the transition is controlled
by the detuning with respect to the nearest o-defect mode,
whatever the detuning between the o- and e-defect modes,
but with some exception in the vicinity of the e-defect modes
where a supercritical Hopf bifurcation is found (i.e. second-
order transition), as illustrated in figure 6. This emphasizes

Figure 8. Director reorientation characteristics for negative (panels
(a)–(c)) and positive (panels (d)–(f)) detuning λ0 − λo

d = ±5 nm near
the defect mode λo

d ≈ 600 nm. The total phase delay �H/2π and
angular rotation frequency 	 versus input intensity are shown in (a),
(d) and (b), (e), respectively. The total twist defined by
� = �H(1, τ ) − �H(0, τ ) versus �H/2π is shown in (c), (f). Solid
(dashed) curves correspond to stable (unstable) regimes.

the prominent role played by the e-defect modes in the case P
although incident light is ordinary polarized.

4. All-optical dynamical optical response

As expected from the analysis of H and P nematic slab alone
in section 2.2, we find dynamical regimes for the director
reorientation above ρH,th and ρP,th, respectively. In the case H,
however, there is no nutation regime (∂�H/∂τ �= 0) whatever
the wavelength, although uniform precession (∂�H/∂τ =
constant) is always present. In the case P, the distorted state
is static or corresponds to an oscillatory motion in the (x, y)

plane. These regimes are sketched in figure 7 and next we
discuss the optical response of the structure when dynamics
takes place.

Homeotropic case. The uniform director nutation-free
precession dynamics corresponds to a constant polar spatial
profile (�H) for which �H is an estimate of the overall
amplitude (see equation (6)). The azimuthal spatial profile is
also constant but in a frame that rotates at constant angular
velocity 	 = ∂�H/∂τ = d�

(0)
H /dτ around the z axis. Also,

we define the overall twisted character of the distortion profile
in the rotating frame as the twist angle between the output and
input facets of the nematic defect layer, � = �H(1, τ ) −

6
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Figure 9. (a) Reduced Stokes’ parameter s3 versus input intensity
where solid (dashed) curves refer to stable (unstable) states.
(b) Ordinary and extraordinary transmissions To (solid curve) and Te

(dashed curve) versus input intensity at λ0 = 650 nm. Gray areas
correspond to the range of values explored during the dynamics.

�H(0, τ ). The incident intensity dependences of these three
representative quantities, �H, 	, and � are shown in figure 7
for negative and positive detuning, λ0 − λo

d = ±5 nm, near the
defect mode λo

d ≈ 600 nm (see figure 4(c)).
In fact, �H and 	 are related to distinct features of the

polarization state at the output of the structure, namely the
ellipticity and the rotation rate of the polarization ellipse,
whose azimuth is given by �H(1, τ ) [18, 22] (rigorously, non-
adiabatic light propagation when � �= 0 slightly modifies
this correspondence). Since �H is time-independent, the
total transmission TH is constant and the dynamical optical
response of the structure is merely contained in the polarization
azimuth whatever the sign of the detuning. The intensity
dependence of the optical response, however, strongly depends
on wavelength, as shown in figure 8. Indeed, for negative
detuning, the overall reorientation picture is very similar to

the case of linearly polarized excitation [11], as shown in
figure 8(a). This is due to the almost untwisted distortion
profile, �

(m)
H 	 1, hence � 	 1, see figure 8(c). This

contrasts with the case of positive detuning where a complex
reorientation diagram is found (figure 8(c)) as a result of large
twist amplitude and associated significant non-adiabatic light
propagation effects. Such a behavior is not observed for a
homeotropic slab alone and is the signature of the interaction
between o- and e-defect modes that are no longer degenerate
when n �= n0.

Planar case. Static or oscillatory regimes are found depending
on the incident wavelength and intensity. Static distortions
are found for almost any wavelength except in the vicinity
of extraordinary defect modes where oscillatory dynamics
appears via a Hopf bifurcation, as illustrated in figure 9(a). In
that case, the output optical response exhibits time-dependent
o- and e-transmissions, as shown in figure 9(b); however,
note that the modulation depths of To(τ ) are much less
pronounced than that of Te(τ ) and Te 	 To. Details of the
dynamics are illustrated in figure 10 near and well above the
threshold at intensities that correspond to labels A and B in
figure 9(a), respectively. As expected from a Hopf bifurcation,
a single frequency characterizes the dynamics near ρP,th, see
figure 10(a), whereas a second frequency grows up as the
intensity increases, which leads to a quasi-periodic oscillation
with the subsequent appearance of harmonic frequencies and
frequency mixing that are clearly seen in the Fourier spectrum
of the time-dependent transmission, see figure 10(b). The
corresponding spatio-temporal director dynamics, �P(ξ, τ ), is
shown in figures 10(c) and (d). Aperiodic dynamics, which
has not been predicted for a planar slab alone [20], is also
found in simulations at higher intensities (not shown here),

Figure 10. Fourier spectra of the time-dependent total transmission ((a) and (b)) and spatio-temporal dynamics of the azimuthal spatial profile
�P(ξ, τ) ((c) and (d)) just above the Hopf bifurcation threshold (see A in figure 9(a)) and far above the threshold (see B in figure 9(a)).
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which emphasizes how the presence of the periodic structure
compares with the homeotropic case.

5. Conclusion

The dynamical response of all-optical liquid crystal infiltrated
photonic structures has been discussed in two light–matter
interaction geometries that correspond to a circularly (linearly)
polarized incident beam impinging at normal incidence onto
a one-dimensional periodic structure in which is embedded a
nematic liquid crystal defect layer with homeotropic (planar)
alignment (i.e. perpendicular (parallel) to the layer). In both
cases the incident beam polarization state corresponds to an
ordinary wave and optical reordering takes place only above
a threshold for the input intensity that is much smaller than
the usual optical Fréedericksz transition threshold reduced
with respect to in the vicinity of ordinary defect modes. It
has been shown that self-sustained dynamics of the output
light polarization and/or intensity can take place in contrast
with all previous attempts discussed so far, thus paving the
way towards an all-optical dynamical response of photonic
structures using liquid crystals. For example, this could be
used to exploit dynamically the recently introduced concept of
reversible optical nonreciprocity [30].

Acknowledgments

This work was supported by the Australian Research Council
through the Discovery Project and Centre of Excellence
programs and by the France–Australia cooperation project
21337 of CNRS.

References

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Joannopoulos J, Meade R and Winn J N 1995 Photonic

Crystals: Molding the Flow of Light (Princeton, NY:
Princeton University Press)

[4] Juodkazis S, Mizeikis V, Matsuo S, Ueno K and
Misawa H 2008 Bull. Chem. Soc. Japan 4 411

[5] Soljacic M and Joannopoulos J D 2004 Nat. Mater. 3 211
[6] Busch K and John S 1999 Phys. Rev. Lett. 83 967
[7] Yoshino K, Shimoda Y, Kawagishi Y, Nakayama K and

Ozaki M 1999 Appl. Phys. Lett. 75 932
[8] Demeter G and Krimer D O 2007 Phys. Rep. 448 133
[9] Khoo I C 2009 Phys. Rep. 471 221

[10] Miroshnichenko A E, Pinkevych I and Kivshar Y S 2006 Opt.
Express 14 2839

[11] Miroshnichenko A E, Brasselet E and Kivshar Y S 2008 Appl.
Phys. Lett. 92 253306

[12] Laudyn U A, Miroshnichenko A E, Krolikowski W, Chen D F,
Kivshar Y S and Karpierz M A 2008 Appl. Phys. Lett.
92 203304

[13] Miroshnichenko A E, Brasselet E and Kivshar Y S 2008 Phys.
Rev. A 78 053823

[14] Brasselet E, Miroshnichenko A E, Chen D F, Krolikowski W
and Kivshar Y S 2009 Opt. Lett. 34 488

[15] de Gennes P G 1974 The Physics of Liquid Crystals (Oxford:
Oxford University Press)

[16] Berreman D W 1972 J. Opt. Soc. Am. 62 502
[17] Tabiryan N V, Sukhov A V and Zel’dovich B Y 1986 Mol.

Cryst. Liquid Cryst. 136 1
[18] Brasselet E, Galstian T V, Dubé L J, Krimer D O and
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