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Abstract
We introduce the concept of singular optical reordering of birefringent elastic media using
Gaussian beams. Theoretical and experimental results are reported in the particular case of a
uniformly aligned nematic liquid crystal film illuminated at normal incidence by a circularly
polarized beam. The longitudinal component of the light field is demonstrated to be at the
origin of cylindrically symmetric singular reorientation of the optical axis that can be described
by the superposition of a radial and azimuthal elastic distortion field. Moreover, the handedness
of the overall reorientation pattern is controlled by the handedness of the incident beam circular
polarization.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Liquid crystals can self-assemble into various phases
characterized by well-defined orientational ordering of their
crystalline axis and are well known to be sensitive to external
fields. Light is no exception. Indeed the high birefringence and
low elastic constants of liquid crystals confer to them genuinely
high optical nonlinearities that are essentially driven by their
orientational degree of freedom. Although these orientational
optical nonlinearities can be triggered either by resonant or
nonresonant light–matter interaction processes [1] here we will
consider only the case of purely dielectric optical reorientation.

A famous example is the optical Fréedericksz transition
experimentally demonstrated in nematic liquid crystals by
Zolot’ko et al in 1981 [2], which is associated with the
spectacular appearance of laser-induced diffraction rings [3].
The optical reordering of thermotropic liquid crystals, for
which the temperature controls the successive appearance
of distinct mesophases [4], has been the subject of long
lasting research activities that were very productive in the
1980s [5]. In particular the self-induced stimulated light
scattering phenomenon, where the Stokes shift is driven by the
light itself, was unveiled [6, 7]. During the 1990s, significant
advances were made by exploring various polarization states
for the excitation light [8–11] and, more particularly, the

transition from regular to chaotic reorientation dynamics was
thoroughly investigated by many groups [12–15]. A renewed
interest appeared during the last decade in the context of
chaos [16–19] and also following the discovery of a secondary
instability above the Fréedericksz transition under circularly
polarized light [20]. This eventually led to an accurate
theoretical description of laser-induced nonlinear dynamics in
the plane wave limit [21–23]. Moreover, light–matter angular
momentum exchanges were no longer restricted to spin angular
momentum but extended to the orbital angular momentum as
well [24, 25], for which a mature modeling toolbox is now
available [26].

Until now, optical reordering of liquid crystals has
been experimentally discussed, and theoretically described,
in the framework of a smooth spatial reorientation profile
(i.e., a spatial distribution of the molecular axes free from
orientational singularities) generated by smooth optical fields
(i.e., light beams free from optical singularities). The
generation of singular orientational patterns in liquid crystals
using Gaussian beams is nevertheless possible, as shown
recently in [27]. Here our purpose is to introduce in more detail
the concept of singular optical reordering of birefringent and
elastic media.

The particular case of a uniformly aligned nematic liquid
crystal film illuminated at normal incidence by a circularly
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Figure 1. (a) Unperturbed homeotropic nematic liquid crystal film.
(b) Radial (Γr) and azimuthal (Γφ) components of the optical
dielectric torque density that lead to azimuthal (δnφ) and radial (δnr)
elastic distortions, respectively. In this example �r > 0 and �φ < 0,
which leads to δnφ < 0 and δnr < 0, respectively. (c) Sketch of the
cylindrically symmetric radial and azimuthal reorientation modes.

polarized fundamental Gaussian beam is considered in this
work. In fact, the longitudinal component of the light field
is at the origin of a space-variant optical torque density that
generates radial and azimuthal elastic distortions. Such laser-
induced singular reorganization of the liquid crystal ordering
is theoretically addressed in section 2, and experimental
observations are reported in section 3.

2. Model

2.1. Qualitative considerations

Let us consider a non-magnetic dielectric material illuminated
by a light field. Neglecting nonlinear electronic susceptibili-
ties, the material acquires a polarization density P, which is re-
lated to the electric field E by a linear tensorial relationship. As
a result, an optical torque density Γlight = 1

2 Re(P∗ × E) is ex-
erted on the medium (the complex notation is used). As a mat-
ter of fact Γlight �= 0 when the polarization and the electric field
are not collinear, which can happen in anisotropic dielectrics
such as liquid crystals. In the case of uniaxial nematics, the
optical axis orientation is defined by a unit vector n called the
director, which represents the local average orientation of the
liquid crystal molecules, and Γlight = εa

8π Re[(n ·E∗)(n×E)] in
Gaussian units, where εa = ε‖−ε⊥ is the dielectric permittivity
anisotropy and symbols (⊥, ‖) refer to directions perpendicu-
lar and parallel to n, respectively.

For the purpose of illustration, we choose a homogeneous
nematic slab lying in the (x, y) plane that has its optical axis at
rest, n0, along the z axis (see figure 1(a)). Therefore

Γlight = εa

8π
Re(−E∗

z Eφ er + E∗
z Er, eφ), (1)

= �r er + �φ eφ, (2)

where (er, eφ, ez) is the cylindrical coordinate system.
Obviously, Γlight = 0 for a plane wave since Ez = 0 in
that case. A real light beam, however, can exert non-zero
radial (Γr) and azimuthal (Γφ) torque densities due to a non-
zero longitudinal component for the light field. Consequently,
azimuthal (δnφ ) and radial (δnr) elastic distortions of the
unperturbed state n0 are expected from Γr and Γφ , respectively,
as illustrated in figure 1(b).

The general expression for the perturbed director n =
n0 + δn is therefore written

δn = δnr er + δnφ eφ + δnz ez, (3)

where δnz = (1−δn2
r −δn2

φ)
1/2−1 (recall that |n| = 1) and we

introduce two cylindrically symmetric collective reorientation
modes, which we will further refer to as the radial and the
azimuthal modes, as illustrated in figure 1(c). Note that the
excitation of these modes requires an optical torque density
that does not depend on φ. This suggests the use of a circularly
polarized fundamental Gaussian beam as the simplest choice
in practice, which is retained here both for modeling and
experimental purposes.

Readers who are familiar with the optical Fréedericksz
transition problem might be surprised to read about optical
reordering of nematics without a threshold. Indeed this
looks in contradiction to the common statement that optical
reorientation occurs above a threshold when a light beam
is normally incident onto a homeotropic nematic film (i.e.,
perpendicular alignment). However, this is true only for
the ideal case of a plane wave, where the optical torque
density on the unperturbed state is zero. In contrast, our
considerations hold for any real beam. In other words,
the optical Fréedericksz transition problem in the real world
implies singular optical reordering, at least for low light
intensities, as demonstrated in this study. Obviously, this does
not prevent spontaneous symmetry breaking and the transition
to regular optical reordering at larger intensities, as discussed
in section 3.3.

2.2. Quantitative description

The model is derived in a standard way from the minimization
of the total free energy [5]

F =
∫ L

0

∫ ∞

0

∫ 2π

0
r(Fel + Fopt) dφ dr dz, (4)

where Fel,opt are the elastic and optical free energy densities,
respectively. In addition, the input facet of the nematic film is
located at z = 0 and L is the film thickness. Within the single
elastic constant approximation

Fel = 1
2 K [(∇ · n)2 + |∇ × n|2], (5)

where K is the Frank elastic constant and

Fopt = − 1

16π
εi j Ei E∗

j , (6)

where {i, j} = {x, y, z} and the dielectric permittivity tensor
is

εi j = ε⊥δi j + εani n j . (7)

A basic requirement is the evaluation of the electric field
inside the nematic, which is a complicated task when δn �=
0. However, by restricting the model to small distortion
amplitude we retain the electric field expression that follows
from its propagation on the unperturbed state n = n0, thereby
neglecting the feedback of optical reorientation on the light
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field itself. This can be done according to the work of Ciattoni
et al [28] that deals with the propagation of a circularly
polarized Gaussian beam inside a c-cut uniaxial crystal in
the paraxial approximation. In practice such an approach
benefits from the simple expression for the transverse part of
the field derived in [29] where the birefringence is considered
as a small parameter. The longitudinal component is then
obtained from the procedure detailed in [30]. We get, in the
Cartesian coordinate system (ex , ey, ez), up to the unimportant
phase factor exp(−iωt + ik0n⊥z ± iφ) that will disappear once
inserted in equation (6),

E± = E0G√
2

[
(e∓iφ cos�+ i e±iφ sin�) ex

± i(e∓iφ cos�− i e±iφ sin�) ey − r

Z
ez

]
, (8)

where the ± signs refer to left- and right-handed incident
circular polarizations that are represented by the unit
vectors c± = (ex ± iey)/

√
2, respectively; G =

−(iz0/Z) exp(iβr 2/Z) is the spatial profile of the fundamental
Gaussian beam, whose waist is located at z = 0, with Z =
z − iz0, β = πn/λ, z0 = πnw2

0/λ the Rayleigh distance,
n = (n⊥ + n‖)/2 and λ the wavelength; k0 = 2π/λ; ω is the
pulsation frequency; � = εβr 2z/Z 2 with ε = (n‖ − n⊥)/n
and n‖,⊥ = ε

1/2
‖,⊥ the refractive indices along and perpendicular

to n, respectively.
Note that the Cartesian representation given by equa-

tion (8) can be put in a more compact form in the cylindrical
coordinate system using c± = (er ± ieφ) e±iφ/

√
2:

E± = E0G√
2

(
ei� er ± e−i� eφ − r

Z
ez

)
. (9)

Once the optical field is known, a set of coupled partial
differential Euler–Lagrange equations for δnr and δnφ can be
obtained from the calculus of variations for F . Instead, for
the sake of simplicity, the distorted director field is sought
by imposing an ansatz for the two independent radial and
azimuthal modes. In this way, analytical expressions can be
obtained.

First, note that a circularly polarized Gaussian beam
leads to cylindrically symmetric radial and azimuthal torque
densities since ∂�r,φ/∂φ = 0 (see equations (1) and (9)).
Therefore ∂δnr,φ/∂φ = 0 and we will assume δnr,φ =
R(r)Z(z). The longitudinal boundary condition n = n0 at z =
(0, L) gives Z(0) = Z(L) = 0, thus allowing the expansion
of Z on the Fourier basis, Z(z) = ∑

m A(m) sin(mqz),
where m are positive integers and q = π/L. On the other
hand, the absence of reorientation far away from the beam
imposes R(∞) = 0, whereas the cylindrical symmetry ensures
R(0) = 0. A physically acceptable radial dependence is then
grasped by noting that the radial and azimuthal torque are both
proportional to the longitudinal electric field component and
quadratic in the electric field amplitude, see equation (1). Since
Ez ∝ r and Er,φ,z ∝ G, see equation (9), we thus retain a
dependence on r of the form R(r) = (r/w) exp(−2r 2/w2),
where w is a characteristic length. In summary, the radial and
azimuthal distortion fields are sought in the form

δnr,φ(r, z) = r

wr,φ
exp(−2r 2/w2

r,φ)
∑

m

A(m)r,φ sin(mqz), (10)

where A(m)r,φ and wr,φ refer to the mode amplitudes and waists,
respectively. In what follows the longitudinal modal expansion
is restricted to the first modes only (m = 1) in order to establish
a minimal model.

The stationary reoriented state is then found by
minimizing F with respect to the set of unknowns u =
(A(1)r , A(1)φ , wr, wφ). This gives a system of four coupled
equations:

∂F
∂uk

= 0 with k = {1, 2, 3, 4}, (11)

and, since there is no possible confusion when dealing with
the monomodal approximation, the superscripts on the mode
amplitudes will be further omitted. This system of equations
is rewritten S(u) = 0, where S is given in appendix A and an
approximate analytical solution is given in appendix B. The
zeros of S are evaluated numerically using a Newton–Raphson
method. In simulations we used n⊥ = 1.53 and n‖ = 1.77
for the refractive indices of the nematic liquid crystal E7 used
in the experiments, and L = 100 μm for the film thickness.
Also, we introduced the longitudinal and transverse reduced
lengths as multiples of the characteristic lengths z0 and w0,
respectively: z̃ = z/z0, L̃ = L/z0, q̃ = qz0, r̃ = r/w0 and
w̃r,φ = wr,φ/w0. Finally, we defined the reduced power P̃ =
P0/Pc with P0 = c

8π n|E0|2
∫ 2π

0

∫ ∞
0 r exp(−2r 2/w2

0) dr dφ the
total incident power and Pc = cK/n a characteristic power
for the optical reorientation of the nematic, c being the speed
of light in free space (Pc equals a few milliwatts for usual
nematics).

From a general point of view, when the beam waist is
located at z = 0, Ar < 0 whereas the sign of the azimuthal
mode amplitude depends on the incident beam polarization
handedness, namely Aφ < 0 (Aφ > 0) in the c+ (c−)
case. This can be qualitatively understood by noting that the
optical torque density exerted onto the unperturbed director
is expressed as Γ± ∝ ±er − z̃eφ in the limit of small
birefringence. Consequently, �φ < 0 whatever the incident
polarization handedness, hence Ar < 0 as illustrated in
figure 1(b). Moreover �r > 0 (�r < 0) for c+ (c−) incident
polarization, hence Aφ < 0 (Aφ > 0), see figure 1(b).
Typical radial and azimuthal patterns are shown in figures 2(a)
and (b) and the influence of the polarization handedness of the
pump light beam is demonstrated in figures 2(c) and (d) that
emphasize the chiral character of the optically induced elastic
distortion field.

The power dependence of Ar,φ is shown in figure 3(a)
and the maximal distortion amplitude in the (x, y) plane,
|δn⊥|max = [δn2

r (r, z) + δn2
φ(r, z)]1/2

z=L/2, is displayed in
figure 3(b). As expected from section 2.1, the singular
optical reordering does not exhibit a threshold behavior. More
quantitatively, the absolute value of the reorientation amplitude
monotonously increases with power for both modes, whatever
the beam waist. This is demonstrated in figure 3(a), where
the cases L̃ = 10 (red curves, label 1), L̃ = 1 (black curves,
label 2) and L̃ = 0.1 (blue curves, label 3) are considered.
The relative weights of the radial and azimuthal components is
found to strongly depend on L̃ . Indeed Ar/Aφ ∼ 1 at larger
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Figure 2. Light-induced radial (a), azimuthal (b) and total ((c), (d))
distorted director field pattern in the (x, y) plane, with
w̄ = (wr +wφ)/2. The effect of the polarization handedness of the
pump beam is shown in panel (c) and (d), where the incident
polarization is c+ and c−, respectively.

Figure 3. (a) Calculated radial (solid curves) and azimuthal (dashed
curves) amplitudes Ar and Aφ versus power for L̃ = 10 (red curves,
label 1), L̃ = 1 (black curves, label 2) and L̃ = 0.1 (blue curves,
label 3). (b) Maximum transverse reorientation amplitude |δn⊥|max

for the same conditions as in panel (a). The incident polarization
is c+.

L̃ (i.e., when the beam significantly diverges inside the liquid
crystal) whereas Ar/Aφ � 1 for smaller L̃ (i.e., when the
beam waist is almost constant and equals w0 throughout the
film). Such a behavior can be inferred from equations ((A.6)
and (A.7)). Indeed one can derive the following scaling laws:
Ar/Aφ ∝ L̃1 when L̃ � 1 and Ar/Aφ ∝ L̃0 when L̃ �
1.1 In fact these trends are clearly seen from the numerical
simulations shown in figure 4(a). On the other hand, w̃r,φ do
not depend on power at fixed beam waist whereas they depend
on the beam waist at fixed power, as shown in figure 4(b). In
fact w̃r,φ increase with L̃ and w̃r/w̃φ � 1 in the investigated
range 0.1 < L̃ < 10 (see inset of figure 4(b)).

1 These scalings are derived in the limit of small ε by considering wr ∼ wφ ,
which is satisfied at least in the investigated range of L̃ as shown in figure 4(b).

Figure 4. (a) Calculated radial (solid curves) and azimuthal (dashed
curves) amplitudes Ar and Aφ , and ratio Ar/Aφ (red curve) versus L̃,
at P̃ = 100. (b) Reduced radial (solid curves) and azimuthal (dashed
curves) waists w̃r and w̃φ for the same conditions as in panel (a).
Inset: ratio w̃r/w̃φ . The incident polarization is c+.

Figure 5. Experimental set-up; BS: beamsplitter; Oi : microscope
objectives; NLC: nematic liquid crystal; Fi: interference filters;
QWP: quarter wave plate; P: polarizer; CCD: imaging device. Panel
(a) ((b)) represents the intensity distribution of the linear (circular)
component of the output probe (pump) beam whose polarization
state is orthogonal (parallel) to the input probe (pump) beam linear
(circular) polarization when there is no significant light-induced
reorientation. (c) Definition of the angle γ0 that corresponds to a total
phase delay ψ0 = π for the unperturbed state n = n0, hence defining
the dark ring location seen on panel (b).

3. Experiment

3.1. Set-up

The experiment is performed using the set-up shown in
figure 5. A c± polarized TEM00 pump beam operating at
λ1 = 514.5 nm is focused at normal incidence onto a L =
100 μm thick nematic liquid crystal film (E7, from Merck).
Strong anchoring conditions impose n = n0 = ez at rest.
The output c∓ component is extracted using a quarter wave
plate and a polarization beamsplitter, and its intensity profile
is visualized imaged on CCD1 (figure 5(b)). A weak collinear
linearly polarized TEM00 beam (λ2 = 632.8 nm) probes the
central part of the pumped region. Its output linear component
whose polarization is orthogonal to the incident probe beam
one is monitored on CCD2 (figure 5(a)).

The use of an objective lens with numerical aperture
NA = 0.5 in an underfilling configuration gives a beam waist
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Figure 6. (a) Intensity profile of the co-polarized output circular
component of the pump beam versus power. (b) Experimental power
dependence of the dark ring diameter d . The solid line refers to a
linear fit to guide the eyes. (c) Typical intensity profile for the
contra-polarized output circular component.

diameter 2w0 ≈ 2 μm and allows one to define the Rayleigh
distance z0 ≈ 10 μm from a paraxial formulation of Gaussian
beams, i.e., L̃ = 10. Hence, non-paraxial corrections to
the description of the optical field (for example, see [31])
can be neglected in practice, which validates the electric field
expression given by equations (8) and (9).

At low incident power, the liquid crystal is almost
unperturbed and the main features expected from a c-cut
uniaxial crystal are observed. Indeed we observe a Maltese
cross under crossed linear polarizers, see figure 5(a), whereas
a circularly symmetric intensity profile having a bell shaped
envelope is observed under parallel circular polarizers, see
figure 5(b). By construction, the dark ring seen in figure 5(b)
thus corresponds to a polarization state that is orthogonal to the
incident one. In other words it is associated with a total phase
delay between extraordinary and ordinary waves ψ0 = π for
that particular incidence angle γ0, where the index 0 refers to
the unperturbed state n0, as sketched in figure 5(c). Within a
geometrical optics approach (note that L̃ = 10) we have

ψ(θ) = 2π

λ
nε

∫ L

0
θ2 dz, (12)

where θ is the angle between a given ray of light and the optical
axis (here, the z axis). We obtain

γ0 = θ0

√
π

2ε L̃
, (13)

where θ0 = w0/z0 is defined as the half-divergence of the
beam. In the present case γ0 ∼ θ0, which can be qualitatively
checked from figure 5(b) where the dark ring is located at the
periphery of the beam (recall that θ0 is the angle at which the
intensity has decreased by e−2). Also, it explains why only the
first ring is visible, since higher order ones defined by the angle
γp correspond to ψp = (2p + 1)π , with p integer, and fall in
a range where the intensity is negligible.

3.2. Light-induced radial and azimuthal reordering

Three main observations are made when the pump power is
moderately increased (the strong excitation regime is addressed

Figure 7. (a) Definition of the incidence angle γ when n �= n0,
which corresponds to the dark ring shown in figure 6(a).
(b) Calculated γ versus power for L̃ = 10 (red curves, label 1),
L̃ = 1 (black curves, label 2) and L̃ = 0.1 (blue curves, label 3).
(c) Same as in panel (b) for the reduced angle γ /θ0.

in section 3.3). First, the rotational invariance around the z
axis of the intensity pattern recorded by CCD1 is preserved, as
shown in figure 6(a). Second, the intensity profile of the output
pump beam under crossed circular polarizers is also symmetric
and has a null central intensity, a typical example being shown
in figure 6(c). The latter observation indicates the absence of
light-induced birefringence along the z axis, δn = 0 at r = 0,
as anticipated in section 2.1, whereas the cylindrical symmetry
of the output pump beam intensity on the circular polarization
basis demonstrates ∂|δn|/∂φ = 0, as expected too. Third, the
dark ring diameter d decreases, hence the dark ring angle γ , as
summarized in figure 6(b). The predicted trend for the power
dependence of γ is obtained from the condition ψ = π that
must now take into account the inhomogeneous distribution of
the local optical axis n along the path defined by r = γ z,
as sketched in figure 7(a). For this purpose we introduce the
effective angle between the considered ray of light and the local
optical axis,

θeff(z) = γ + arcsin[|δn⊥(r, z)|]r=γ z, (14)

and γ is the solution of ψ(θeff) = π . The results are
summarized in figures 7(b) and (c). Unfortunately, the direct
comparison with experimental data cannot be safely performed
since the exact location of the pump beam is not well defined
in practice.

Additional information on the light-induced elastic
distortions is found from the output probe beam intensity
profile collected by CCD2. Indeed the Maltese cross is all
the more twisted as the power is increased, see figure 8(a).
Recalling that the main axes of a straight cross observed at
rest, see figure 5(a), correspond to the input and output crossed
polarizer directions for the probe beam (here, x and y), a
twisted pattern reflects azimuthal distortions, δnφ(r, z) �= 0, as
sketched in figure 8(b). This also demonstrates a laser-induced
transverse reorientation pattern with topological charge 1, in
other words δn⊥ rotates by 2π over a full revolution around
the z axis, as expected. We also found that the handedness of
such a chiral pattern depends on the incident input polarization
handedness, see figures 8(a) and (c), in agreement with
expectations (see figures 2(c) and (d)).
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Figure 8. (a) Intensity profile of the output probe beam under
crossed linear polarizers versus power. (b) Sketch of the transverse
distorted director field. A circle corresponds to a liquid crystal
molecule along the z axis whereas an elliptical shape refers to a
molecule whose major axis is tilted with respect to z. The darkened
regions correspond to the extinction directions of the polarizers Px,y .
(c) Effect of the pump beam polarization handedness on the
light-induced chiral pattern handedness at fixed power. The picture
should be compared to the rightmost picture of panel (a).

3.3. Light-induced cylindrical symmetry breaking

As discussed in previous sections, the singular optical
reordering of liquid crystals under a circularly polarized
Gaussian beam involves cylindrically symmetric chiral light-
induced elastic distortions (see figures 6 and 8). This strongly
differs from the usual optical Fréedericksz transition under
circular polarization, although the latter is also associated
with light-induced chiral reorientation modes, as shown
theoretically in 1990 [8] and experimentally observed ten
years later [32]. Indeed, the optical Fréedericksz transition is
related to spontaneous cylindrical symmetry breaking. This
surprising distinction for the same interaction geometry is
essentially due to the fact that ‘singular’ optical reordering is
thresholdless whereas ‘regular’ reordering takes place above
a threshold for the optical excitation. Consequently, in any
real experiment, the optical Fréedericksz transition should be
considered as an imperfect bifurcation where the bias torque
(i.e., the non-zero torque exerted on the unperturbed director)
preserves the cylindrical symmetry. We notice that the nature
of the latter imperfect bifurcation differs from the well-known
situation of the imperfect Fréedericksz transition under oblique
extraordinary linear polarization [33], where the bias breaks
the rotational invariance.

As a matter of fact, the beam waists that have been used
so far were in the typical range w0 ∼ 10–100 μm in the
Fréedericksz transition case, hence θ0 ∼ 1–10 mrad, whereas
herew0 ∼ 1 μm, which corresponds to θ0 ∼ 100 mrad. In fact,
recalling that the longitudinal field component is proportional
to θ0, this ensures a large enough amplitude for the singular
torque density (see equation (1)), hence an easier observation
of singular optical reordering.

Cylindrical symmetry breaking is observed for large
enough power, as shown in figure 9. In particular, the chirality
of the light-induced elastic distortions, which is hidden at low
power when looking at the output pump beam on the circular
polarization basis (see figure 6), is revealed via the broken

Figure 9. Illustration of the light-induced cylindrical symmetry
breaking as the power is increased. Panels (a)–(f) refer to the
intensity profile of the pump beam under parallel circular polarizers
versus power for P0 ∼ 600–1200 mW in 120 mW steps. The
self-focusing diffraction ring that corresponds to an off-axis hot spot
of molecular reorientation is indicated in panel (f) as ‘nonlinear ring’
whereas ‘linear ring’ refers to the distorted, initially circular, dark
ring.

symmetry, as illustrated in figures 9(d) and (e). Moreover,
its handedness is in agreement with observations previously
discussed in section 3.2 (see figure 8).

At larger power, an additional dark ring appears, as
shown in figure 9(f), which is reminiscent of the optical
Fréedericksz transition that is usually associated with laser-
induced diffraction rings [3]. Note that the latter ring has a
nonlinear nature, in contrast to the dark ring observed even
at very low power, which is merely a manifestation of linear
optics, as explained in section 3.1.

4. Conclusion

The concept of singular optical reordering of birefringent
elastic media has been introduced and theoretically and
experimentally discussed in the case of liquid crystals.
In contrast to previous optical reorientation techniques,
the proposed approach enables the generation of all-
optically rewritable singular birefringent patterns in initially
homogeneous optically anisotropic soft matter systems. This
phenomenon basically relies on the spatially modulated optical
dielectric torque density arising from the inherent longitudinal
component of the electric field of any real beam. In practice,
the singular optical patterning has been unveiled by enhancing
the amplitude of the longitudinal component of the optical field
owing to an appropriate focusing of the excitation light field.
Cylindrically symmetric radial and spin-dependent azimuthal
light-induced elastic distortion modes have been observed
experimentally and a model has been derived.

Appendix A. Determination of S

The minimization of F within the monomodal approximation,
hence with respect to u = (Ar, Aφ,wr, wφ), is derived to the
first order in Ar,φ . For this purpose, the elastic and optical free
energy densities Fel (equation (5)) and Fopt (equation (6)) are
first expanded in powers of Ar,φ , then the derivatives ∂/∂uk

are performed and finally the integration along φ, r and z
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are carried out. The calculation of the elastic contribution is
straightforward and leads to

∂Fel

∂Ar,φ
= πK L

32
(8 + q2w2

r,φ)Ar,φ, (A.1)

∂Fel

∂wr,φ
= 0, (A.2)

whereas the optical counterpart is more cumbersome and is
derived by inserting equation (10) in equation (6) using

nx = δnr cosφ − δnφ sinφ, (A.3)

ny = δnr sinφ + δnφ cosφ, (A.4)

nz � 1 − (δn2
r + δn2

φ)/2. (A.5)

The derivatives of equation (6) with respect to u are then
obtained and the electric field expression given by equation (8)
is used. Integration along φ is straightforward. Integration
along r benefits from the fact that the birefringence parameter
ε is a small parameter [29] (i.e., only the terms up to
the first order in ε are retained). Indeed, this can be
done analytically since it involves Gaussian integrals of the
form

∫ ∞
0 rn exp(−Cr 2) dr , where n is an integer. The last

integration, along z, has to be done numerically.
The resulting system of equations S(u) = 0 is, in the case

of a c+ circularly polarized incident light beam,

S1 = π L̃

32
(8 + q̃2w̃2

r θ
2
0 )Ar − 2ε P̃

∫ L̃

0

{
sin2(q̃ z̃)

1 + z̃2

×
[

Ar

w̃2
r

(
Irr

3 − 2εβIrr
5 − θ2

0

1 + z̃2
Irr

5

)
+ 2εαAφ

w̃rw̃φ
Irφ

5

]

+ θ0

w̃r

sin(q̃ z̃)

(1 + z̃2)2

(−z̃Ir
3 + ε(β z̃ − α)Ir

5

) }
dz̃, (A.6)

S2 = π L̃

32
(8 + q̃2w̃2

φθ
2
0 )Aφ − 2ε P̃

∫ L̃

0

{
sin2(q̃ z̃)

1 + z̃2

×
[

Aφ
w̃2
φ

(
Iφφ3 + 2εβIφφ5 − θ2

0

1 + z̃2
Iφφ5

)
+ 2εαAr

w̃rw̃φ
Irφ

5

]

− θ0

w̃φ

sin(q̃ z̃)

(1 + z̃2)2

(
Iφ3 + ε(β + αz̃)Iφ5

)}
dz̃, (A.7)

S3 =
∫ L̃

0

z̃ sin(q̃ z̃)

(1 + z̃2)2

×
[

4z̃

w̃2
r

Ir
5 − z̃Ir

3 − ε(β z̃ − α)

(
4

w̃2
r

Ir
7 − Ir

5

)]
dz̃, (A.8)

S4 =
∫ L̃

0

sin(q̃ z̃)

(1 + z̃2)2

×
[

4

w̃2
φ

Iφ5 − Iφ3 + ε(β + αz̃)

(
4

w̃2
φ

Iφ7 − Iφ5
)]

dz̃, (A.9)

where θ0 = w0/z0 is defined as the half-divergence of the
beam. Also, we introduced � = εr̃ 2(α + iβ) with

α(z̃) = z̃(z̃2 − 1)

(1 + z̃2)2
, (A.10)

β(z̃) = 2z̃2

(1 + z̃2)2
. (A.11)

and

Ia
n (z̃, w̃a) =

(
n−1

2

)![
2
(

1
1+z̃2 + 1

w̃2
a

)] n+1
2

, (A.12)

Iab
n (z̃, w̃a, w̃b) =

(
n−1

2

)![
2
(

1
1+z̃2 + 1

w̃2
a
+ 1

w̃2
b

)] n+1
2

, (A.13)

for n odd, where {a, b} = {r, φ}.

Appendix B. Approximate solution

The four-dimensional model described above is reduced to
a two-dimensional one by assuming a single fixed waist
for the distorted director field, w = wr = wφ . Such
a simplification was used in [27], where w = w0 was
arbitrarily chosen. The latter choice, however, gets rid of the
unavoidable transverse nonlocal orientational effects arising
from the elasticity of the liquid crystal. The transverse nonlocal
response can nevertheless be taken into account in a simple
way from the dependence of the waist W of the (assumed)
Gaussian reorientation profile on the pump beam waist W0 that
was derived in [34] in the case of the standard Fréedericksz
optical transition. Namely, W (W0) = [2√

2W0 L/π]1/2. By
noting that the characteristic spatial profile for the excitation
field (i.e., the optical torque density) is in our case of the
form (r/w0) exp(−2r 2/w2

0) (see section 2.1), the characteristic
length associated with the Gaussian beam excitation should be
taken as W0 = w0/2. Therefore we retain w = W (w0/2),
which gives

w̃ =
[√

2L/(πw0)
]1/2

. (B.1)

The comparison between equation (B.1) and the results
obtained for w̃r,φ within the four-dimensional model is shown
in figure B.1 for 1 < w0 < 10 μm, which corresponds to the
investigated region for L̃ in figure 4. A qualitative agreement
is found and the corresponding approximate two-dimensional
system, S′(u′) = 0, where u′ = (Ar, Aφ) is the unknown
vector, is:

S′
1 = π L̃

32
(8 + q̃2w̃2θ2

0 )Ar − 2ε P̃
∫ L̃

0

{
1

w̃2

sin2(q̃ z̃)

1 + z̃2

×
[

Ar

(
I ′′

3 − 2εβI ′′
5 − θ2

0

1 + z̃2
I ′′

5

)
+ 2εαAφI ′′

5

]

+ θ0

w̃

sin(q̃ z̃)

(1 + z̃2)2

(−z̃I ′
3 + ε(β z̃ − α)I ′

5

) }
dz̃, (B.2)

S′
2 = π L̃

32
(8 + q̃2w̃2θ2

0 )Aφ − 2ε P̃
∫ L̃

0

{
1

w̃2

sin2(q̃ z̃)

1 + z̃2

×
[

Aφ

(
I ′′

3 + 2εβI ′′
5 − θ2

0

1 + z̃2
I ′′

5

)
+ 2εαArI ′′

5

]

− θ0

w̃

sin(q̃ z̃)

(1 + z̃2)2
(I ′

3 + ε(β + αz̃)I ′
5)

}
dz̃, (B.3)

where I ′
n and I ′′

n refer to Ia
n and Iab

n , respectively, with w̃r =
w̃φ = w̃.
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Figure B.1. Dependence on the incident beam waist w0 of the radial
(solid curve) and azimuthal (dashed curve) reduced waists, w̃r,φ ,
calculated from the four-dimensional model, and the analytical single
waist approximation (dash-dotted curve), w̃, given by equation (B.1).

Obviously, S′(u′) = 0 can be rewritten m · u′ = v where
m is a 2 × 2 symmetric matrix and v is a vector, both being
independent of u′. This system admits the analytical solution

Ar = m22v1 − m12v2

m11m22 − m12m21
, (B.4)

Aφ = m11v2 − m21v1

m11m22 − m12m21
, (B.5)

where mij and vi are the elements of the matrix m and vector
v, respectively. Such a solution corresponds to the result
derived in [27] when w̃ = 1 but noting that the condition
nz ≡ 1 was there imposed in the definition of the ansatz for
the distorted director field. However, although nz = 1 up to
the first order in the reorientation amplitude, the second order
contribution (see equation (A.5)) must be taken into account
when solving the problem up to the first order in Ar,φ . Indeed,
the term εzz |Ez|2 in the expression of the optical free energy
density (see equation (6)) contributes to the final result as terms
proportional to θ2

0 in equations (B.2) and (B.3).
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MBBA crystal Pis. Zh. Eksp. Teor. Fiz. 34 263–7

Zolot’ko A S, Kitaeva V F, Kroo N, Sobolev N N and
Csillag L 1981 JETP Lett. 34 250–4 (Engl. Transl.)

[3] Durbin S D, Arakelian S M and Shen Y R 1981 Laser induced
diffraction rings from a nematic liquid crystal film Opt. Lett.
6 411–3

[4] Oswald P and Pieranski P 2005 Nematic and Cholesteric Liquid
Crystals: Concepts and Physical Properties Illustrated by
Experiments (London: Taylor and Francis/CRC Press)

[5] Tabiryan N V, Sukhov A V and Zel’dovich B Ya 1986 The
orientational optical nonlinearity of liquid crystals Mol.
Cryst. Liq. Cryst. 136 1–139

[6] Santamato E, Daino B, Romagnoli M, Settembre M and
Shen Y R 1986 Collective rotation of molecules driven by

the angular momentum of light in a nematic film Phys. Rev.
Lett. 57 2423–6

[7] Santamato E, Romagnoli M, Settembre M, Daino B and
Shen Y R 1988 Self-induced stimulated light scattering
Phys. Rev. Lett. 61 113–6

[8] Zolot’ko A S and Sukhorukov A P 1990 Fréedericksz transition
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