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Influence of the backward propagating waves on the twist optical Fréedericksz transition in
planar nematic films
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We report on the influence of backward propagating waves on the twist optical Fréedericksz transition when a
linearly polarised light impinges at normal incidence on a nematic liquid crystal film with planar alignment. We
show that the reorientation threshold oscillates as a function of the optical thickness of the nematic layer. The
amplitude of these oscillations strongly depends on the refractive index changes at the film boundaries and is
shown to be related to interferential effects between forward and backward propagating waves that arise from
unavoidable dielectric permittivity tensor mismatch and the film boundaries.
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1. Introduction

Many aspects of complex light-induced nonlinear
orientational phenomena in liquid crystals have been
investigated during the last few decades, with a par-
ticular emphasis on the dynamical richness arising
from the strong light–matter coupling associated
with the elastic and anisotropic optical properties of
ordered mesophases [1–3]. From the optical point
of view, nematics are uniaxial media described by
a local optical axis along the local average direc-
tion of the molecular axis called the director, n.
Depending on the boundary conditions and bulk
ordering characteristics, a light-driven orientational
instability may take place above a threshold intensity
usually referred to as the optical Fréedericksz tran-
sition (OFT). Besides their fundamental interest, the
optically induced phenomena in liquid crystals seem
to find their potential by moving towards technolog-
ical applications. For instance, it has been recently
proposed that all-optical photonic switching devices
might be realised using dielectric periodic structures
partially infiltrated with nematics [4–6].

When considering a linearly polarised light field
impinging at normal incidence onto a planar nematic
film, where the uniform director at rest lies in the
plane of the film, the polarisation plane of the inci-
dent light is a key parameter. Usually, one considers
the two situations when the electric field is parallel or
perpendicular to the director at rest. In both cases,
twisted elastic reorientation modes appear above a
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light intensity threshold. In the first case – extraor-
dinary incident light – a coherent polarisation con-
version process takes place. The latter is mediated
by the coupling between the incident extraordinary
(e) wave and a lower-frequency noisy ordinary com-
ponent that arises from scattering of the incident
light by the director orientational fluctuations. As a
result, the ordinary (o) wave experiences gain dur-
ing its propagation throughout the cell [7, 8]. In the
second case – ordinary incident light – the twist opti-
cal Fréedericksz transition (TOFT) takes place. Up
until now, this phenomenon has only been consid-
ered theoretically, which is explained by the predicted
intensity threshold values that turn out to be very
high [9]. Recently, the TOFT has been revisited and it
has been shown that the stationary bifurcation solu-
tion derived by Santamato et al. [9] is only valid
in the limit of optically thin nematic films. Indeed,
for thick enough films, the TOFT takes place via a
Hopf bifurcation [10]. Although experimental infor-
mation is lacking, as said above, we note that the
planar geometry has, nevertheless, been investigated
experimentally by using a nematic film embedded
into a periodic dielectric structure [11], which seem-
ingly demonstrates the observation of an accessible
intensity threshold in practice.

In this work, in an attempt to guide future exper-
imental investigations, we quantitatively estimate
the influence of unavoidable backward and forward
light scattering from refractive indices mismatch at
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1022 D.O. Krimer et al.

the boundaries of a realistic sample on the TOFT
threshold. Such considerations are usually neglected,
which is well justified for homeotropic alignment
when the director is perpendicular to the plane of
the film. However, in the case of planar alignment,
matching the refractive indices at the boundaries
imposes the use of anisotropic substrates, which have
not been used in the OFT experiments reported so
far. Our analysis unveils the crucial role of backward
waves in the calculation of the threshold intensity
value.

2. The model

We consider a linearly polarised plane wave
with wavelength λ impinging at normal incidence
(along z) on a planar aligned nematic liquid crystal
layer of thickness L (see Figure 1). The unperturbed
director, n0, lies along the x-axis and the light is
polarised along the y-direction, i.e. we deal with
an incident ordinary wave. The theoretical descrip-
tion of optically induced orientational phenomena
in nematics is a well-posed problem that consists
of coupled nemato-dynamic and Maxwell’s equa-
tions for the light propagation inside an anisotropic
medium [12]. There are several common simplifica-
tions that are employed to solve these equations.
First, fluid flow associated with the director reori-
entation (backflow effect) is neglected. Indeed, flow
plays only a passive role and in most known cases it
merely leads to slight quantitative differences [13, 14].
In this study we neglect all transverse effects and
assume that all variables depend solely on z. This
allows us to simplify Maxwell’s equations drastically.
Therefore, a light beam in a real situation might
be treated as a plane wave and any experimental
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Figure 1. Light–matter interaction geometry: a linearly
polarised light along the y-axis is normally incident onto
a nematic layer with initial uniform alignment of the direc-
tor, n0, along the x-axis. We refer to such an unperturbed
state as the ‘planar state’. Within the infinite plane wave
approximation used in the present work, the reoriented liq-
uid crystal is fully described by the dependence of the twist
angle on the z coordinate and time (t), �(z, t).

attempt to validate the theoretical predictions should
be performed by using a laser beam with a charac-
teristic diameter much larger than the thickness of
the nematic layer. The applicability of such a one-
dimensional approximation has already been vali-
dated for homeotropic nematic samples, where n0 is
parallel to the z-axis. More precisely, it turns out
that this approximation also works rather well for the
beam diameters of the order of approximately L [15,
16]. We note that the realisation of spatially inho-
mogeneous transverse structures in the (x, y) plane
is hardly probable. Indeed, as shown in [17] in the
limit of thin layers, such structures appear only for
large elastic anisotropy, which is not the case for com-
mon nematics. Next, we assume strong anchoring
conditions n(z = 0, t) = n(z = L, t) = n0 and intro-
duce the representation adapted to our geometry
in terms of the spherical angles �(z, t) and �(z, t),
n = (cos� sin�, sin� sin�, cos�). However, as fol-
lows from the simulations, the director reorients in
the (x, y) plane only for all the regimes explored in
the present study. This allows us to fix � = π/2 and
the director is therefore fully described by the twist
angle �. Finally, the strong boundary conditions in
terms of the twist angle are

�(z = 0, t) = �(z = L, t) = 0. (1)

3. ‘TOFT’ under ideal light field boundary
conditions

Hereafter we shall use the normalised length z →
zπ/L and time t → t/τ where τ = γ1L2/(π2K2) is a
characteristic relaxation time with the rotational vis-
cosity γ 1 and the twist Frank elastic constant K2

[12].
In this section, we neglect the effect of the reflec-

tion of light at the boundaries z = 0 and z = π

and calculate the TOFT threshold by performing
the linear stability analysis of the initially uniform
planar orientational state. We eventually obtain the
following integro-differential equation for � [10]:

∂t�= ∂2
z�+2ρ
2

(
�+


∫ z

0
�(z′) sin[
(z′−z)]dz′

)
,

(2)

where ρ = I/Ic is the dimensionless incident light
intensity with Ic = 8π2cK2neδn/[λ2(ne + no)] and


 = 2Lδn/λ (3)

is the reduced phase delay between e- and o-
waves through the whole layer (in units of π )
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Figure 2. (Colour version online). Reduced twist optical
Fréedericksz transition threshold ρth as a function of 

with (solid lines) and without (blue dashed line) consider-
ing the effect of backward waves. Orange (light gray) line:
refractive index of outer media nout = no. Red (dark gray)
line: nout = 1. Lines with 
 < 
c and 
 ≥ 
c correspond
to stationary and Hopf bifurcation, respectively.

with birefringence δn = ne−no, where ne and no are
the refractive indices of the o- and e-waves, respec-
tively.

The linear stability analysis is performed by writ-
ing �(z, t) = �(z) exp(σ t) and inserting the spatial
Fourier expansion

�(z, t) =
∑

m

ϕm(t) sin(mz) (4)

into Equation (2) with further projection on ϕn (the
Galerkin method). The resulting eigenvalue prob-
lem is then solved numerically (see [10] for details).
As a result, the value of the reduced twist optical
Fréedericksz transition threshold, ρth, is determined.

The results are summarised by the blue dashed
line in Figure 2 and the eigenvalue analysis shows
that the primary instability of the planar state is a
stationary bifurcation only below a critical value
 =

c = 0.64 and a Hopf bifurcation otherwise. We note
that the change from stationary to Hopf bifurcation
when 
 is taken as a control parameter is accompa-
nied by a jump for the TOFT threshold, see Figure 2
and [10] for details.

4. ‘TOFT’ under realistic light field boundary
conditions

Hereafter we consider realistic boundary conditions
at z = 0,π , namely an isotropic dielectric material
that sandwiches the nematic layer with refractive
index nout. For convenience, we introduce the labels
i and t for the first (z < 0, incident side) and the

second (z > π , transmitted side) semi-infinite sur-
rounding dielectric material, and N for the nematic
layer. The modified linear equation requires the
derivation of the expressions for the o- and e-
waves inside the nematic to the first order in that
account for the backward wave contributions. This
is done by using Berremen’s formalism [18], when
the Maxwell equations are cast in matrix form for
the four-component vector �̄T = (Ex , Hy , Ey , −Hx).
Here E(z, t), H(z, t) are the amplitudes of the elec-
tric and magnetic fields, E(r, t) = 1/2(E(z, t)e−iωt +
c.c.), H(r, t) = 1/2(H(z, t)e−iωt + c.c.), where c.c. rep-
resents the complex conjugate, that vary slowly in
time compared to ω−1. The vector can be expressed
by the superposition of four independent electromag-
netic waves (two forward and two backward prop-
agating) that propagates along z (kx = ky = 0) with
the same frequency ω for i, t and N media (Oldano’s
formalism [19]), namely

�̄ =
4∑

j=1

fjψ
j = f1ψ

1 + f2ψ
2 + f3ψ

3 + f4ψ
4 = Tφ,

(5)

where T is the matrix whose columns are eigenvec-
tors ψ j and φ is the vector of amplitudes, φT =
(f1, f2, f3, f4).

The vector of amplitudes φ at the left-hand side
of the first boundary plane (z = 0−) and at the right-
hand side of the second boundary plane (z = π+) can
be written as

φT(0−) = (0, a0, re, ro), φT(π+) = (te, to, 0, 0). (6)

The scattering problem consists of expressing the
amplitudes re, ro, te and to of the reflected and trans-
mitted e- and o-waves as a function of the amplitude
a0 of the incident o-wave. The continuity of the
tangential components of the vectors E and H at
z = 0,π requires

�̄(0−) = �̄(0+), �̄(π−) = �̄(π+) , (7)

so that we can write

Tiφ(0−) = TN(0+)φ(0+), TN(π−)φ(π−) = Ttφ(π+),
(8)
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1024 D.O. Krimer et al.

where Ti and Tt are as follows:

Ti = Tt = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
ni

0
1√
ni

0

√
ni 0 −√

ni 0

0
1√
ni

0
1√
ni

0
√

ni 0 −√
ni

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9)

Owing to the boundary conditions for the director
we have TN(0+) = TN(π−) ≡ T0

N given by

T0
N = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
ne

0
1√
ne

0

√
ne 0 −√

ne 0

0
1√
no

0
1√
no

0
√

no 0 −√
no.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

The evolution of the electromagnetic field as it passes
through the nematic layer can be written by introduc-
ing the propagation matrix K(π ) as

φ(π−) = K(π )φ(0+), (11)

where

K(π) = iαk̄0eiπ k̄0no×
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiπ k̄0d1

iαk̄0

ξ1eiπ
 0 ξ2eiπ


ξ1
1

iαk̄0

−ξ2 0

0 −ξ �2 e−iπq
 e−iπq


iαk̄0

−ξ �1 e−iπq


−ξ �2 eiπ
(1−q) 0 −ξ1eiπ
(1−q) eiπ
(1−q)

iαk̄0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)

Here

α = n2
e − n2

o

2
√

neno
, q = ne + no

δn
(13)

and

ξ1 =
∫ π

0
e−i
z�(z)dz, ξ2 =

∫ π

0
e−i
qz�(z)dz. (14)

Finally, a set of four independent equations that
allows us to express re, ro, te and to as functions of
a0 is derived:

φ(0−) = T−1
i T0

NK−1(π )(T0
N)−1Ttφ(π+). (15)

In general, the resulting expressions for the reflected
and transmitted waves re, ro, te and to are cumber-
some. However it is instructive to consider the par-
ticular case nout = no that simplifies the algebra to a
great extent and gives

re = ia0q

∫ π

0

[
ei
(π−z) + qe−i
q(π−z)

]
�(z)dz

q2e−iπq
 − eiπ

,

ro = 0,

te = ia0q
e
i
2π
(q−1)

∫ π
0

[
qe−i
z + ei
qz

]
�(z)dz

q2e−iπq
 − eiπ

,

to = a0e− i
2π
(q−1).

(16)

As is expected, ro = 0 because an incident ordi-
nary wave is perfectly matched (nout = no). Thus, the
o-wave is entirely transmitted acquiring only the
phase according to Equation (16).

The light field distribution inside the nematic is
then obtained by integrating the equations for the
amplitudes fi(z), since the initial condition φ(0+) =
(T0

N)−1 Ti (0, a0, re, ro)T is known. Finally, the lin-
earised expression for the electromagnetic term is cal-
culated, leading to the following integro-differential
equation for �:

∂t� = ∂2
z�+ 2ρ
2

(
�+


∫ z

0
�(z′) sin[
(z′ − z)]dz′

+
 · Im[F(z)]
)

,

(17)

where F(z) describes the contribution of the back-
ward waves. Then, the stability analysis procedure
is similar to the case of ideal boundary conditions
(see Section 3). In the particular case nout = no, the
explicit formulation of the latter function is

F(z) =
∫ z

0
e−iq
(z−z′)�(z′)dz′ + (ei
z + qe−iq
z)

eiπ
 − q2e−iπq


×
∫ π

0

[
ei
(π−z) + qe−i
q(π−z)

]
�(z)dz .

(18)
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Liquid Crystals 1025

The results are summarised in Figure 2 where
the normalised TOFT threshold ρth is plotted as
a function of the optical thickness of the planar
nematic slab by taking 
 as the control parame-
ter. The solid curves refer to the cases nout = no

and nout = 1 where the contribution of backward
waves is taken into account. The dashed curve cor-
responds to the ideal case discussed in Section 3. The
presence of backward waves has a clear qualitative
effect: the TOFT threshold exhibits oscillations as
a function of the normalised phase delay 
 of the
nematic layer. Such an oscillation is driven by the
dependence of the function F(z) on 
. In the case
nout = no, the resulting oscillation has a pseudo-
period 2/q (see Equation (18)). This corresponds to
a pseudo-period of λ/(ne + no) when considering the
dependence of the threshold on the thickness L. Such
a behaviour emphasises the role played by the inter-
ference between forward and backward propagating
waves, to which we can attribute the physical origin of
the modulation of the TOFT threshold. Accordingly,
the modulation depth drastically increases when the
refractive index jump at the nematic boundaries
is increased, as shown in the case nout = 1 (see
Figure 2).

Intriguingly, we note that the TOFT threshold is
found to exhibit strong relative variations (typically
up to 100%, see Figure 2) although the refractive
index mismatch is associated with modest intensity
reflectance (of the order of a few percent). This
indicates the crucial role played by the spatially dis-
tributed optical feedback inside the liquid crystal
rather than the intensity spatial modulation inside
the nematic which is only due to light field reflec-
tions on the cell boundaries, i.e. without liquid crys-
tal reorientation. In fact, to grasp some qualitative
understanding of the optical feedback issue from the
light intensity distribution one should instead have
a look at the situation at the onset of the reorienta-
tion process. This implies solving the full numerical
problem — a task that departs from our approach
developed here since we merely solve the eigenvalue
problem for the determination of the threshold ρth as
a function of 
. Nevertheless, our approach clearly
allows us to emphasise under what conditions the
effect of seemingly negligible backward scattering
can have a significant impact.

Moreover, it turns out that the TOFT threshold
can be larger or lower than in the ideal case depend-
ing on the value of the phase delay (see Figure 2).
This should certainly be related to the wavelength
dependence of the threshold in the presence of back-
ward waves. Such a dependence is indeed known to
be complex, as discussed in a recent work [6] where
the effect of backward waves is prominent since the

planar nematic is inserted into a one-dimensional
periodic structure. In that case, it was shown that the
TOFT threshold can even be larger than the perfectly
matched situation [6], which offers a valuable hint to
explain the predicted non-intuitive effect.

It is worth noting that relatively high values for
TOFT could be drastically reduced, thereby becom-
ing possibly accessible experimentally, by embedding
the nematic liquid crystal layer into a periodic dielec-
tric structure. Indeed, in such a case, the nematic is an
optically nonlinear defect layer for the correspond-
ing one-dimensional photonic structure. The reason-
ing behind this is that the Bragg scattering mecha-
nism allows the light field to accumulate within the
nematic cell at the so-called defect mode frequen-
cies, thereby possibly lowering the TOFT threshold
by orders of magnitude [6].

Finally, we conclude this section by an experi-
mental remark noting that a sample is typically made
of a nematic slab sandwiched between two glass sub-
strates (with refractive index nglass � no) surrounded
by air. Therefore, we expect the air/glass interfaces
to control the modulation of the TOFT threshold,
which therefore corresponds qualitatively to the case
nout = 1.

5. Conclusions

The effect of backward and forward scattering on the
optical Fréedericksz transition threshold in a nematic
layer with uniform planar alignment has been investi-
gated. The optical thickness of the liquid crystal layer
has been found to be the key parameter. In particu-
lar, we have shown that the reorientation threshold
intensity oscillates as a function of the optical thick-
ness, an effect which is especially pronounced in the
presence of the refractive index mismatch at the film
boundaries.
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