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Dynamics of optical spin-orbit coupling
in uniaxial crystals
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We study theoretically and verify experimentally the detailed dynamics of spin-to-orbital angular momen-
tum conversion for a circularly polarized Gaussian beam propagating along the optical axis of a uniaxial
crystal. We extend the results to the case of white-light beams when each of the spectral components un-
dergoes its own wavelength-dependent angular momentum conversion process. © 2009 Optical Society of
America
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Optical angular momentum is a fascinating property
of the electromagnetic fields [1]. The light beams can
carry spin angular momentum (SAM), associated
with their polarization state, and orbital angular mo-
mentum (OAM), associated with the spatial structure
of the field and phase singularities (or optical vorti-
ces) [2,3]. Spin and orbital components of the angular
momentum can be separated in isotropic homoge-
neous media [4] in the limit of paraxial approxima-
tion however, they become coupled in inhomogeneous
or anisotropic media [5]. Space variant birefringent
[6] or form-birefringent [7] elements represent a
more complicated class of spin-orbit converters that
are simultaneously inhomogeneous and anisotropic.
In contrast, spin-to-orbital angular momentum con-
version may occur in homogeneous and isotropic me-
dia using tightly focused beams, which has been pro-
posed for optical micromanipulation applications [8].

An exchange of the angular momenta between or-
thogonally polarized beams in anisotropic crystals is
of a particular interest [9–16], because the SAM-to-
OAM conversion leads to the generation of optical
vortices owing to a phase difference between the or-
dinary and extraordinary waves [9,10,15]. This con-
version can be employed as a useful tool for generat-
ing polychromatic vortices [15,17], white-light vortex
solitons [18], and partially coherent optical bottle
beams [19].

In this Letter we study the angular momentum ex-
changes between the two orthogonal circularly polar-
ized components of Gaussian beams propagating
along the optical axis of an uniaxial crystal. Using
crystal slabs of different thicknesses we retrieve ex-
perimentally the dynamics of optical spin-to-orbital
conversion by measuring the power conversion effi-
ciency as well as the beam shape transformations of
the coupled singular (double charge optical vortex)
and nonsingular (fundamental Gaussian mode)
beams. Experimental data are confronted with ana-

lytical description of the spin-orbit coupling, and
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these results are extended to the case of white-light
beams, which is spectrally resolved.

First we recall the theory of paraxial beams in
uniaxial crystals [9–16]. Modal solution, E�x ,y ,z�
=c+E+�u ,v ,z�+c−E−�u ,v ,z�, is obtained in the basis
of circular polarizations, c±= �ex± iey� /�2, and in
terms of the variables �u ,v�=x± iy. It reads E�s�

= �c+�u�c−�v���s�, with the generating function satis-
fying �i�s�z+�uv

2 ���s�=0. The fundamental Gaussian
solution is �0

�s�=G�s��−�i�sw2 /Zs�exp�i�suv /Zs�,
where Zs=z− i�sw2 and w is the beam waist at the
crystal input facet, z=0. The signs � in the expres-
sion for E�s� correspond to the following values of the
index s: s=o for the ordinary (TE) mode with �o
=kno /2, and s=e for the extraordinary (TM) mode
with �e=kne

2 /2no, k=2� /� being the free-space wave-
number.

We are interested in a particular solution that cor-
responds to a c+ circularly polarized Gaussian beam
at the input, E�r ,z=0�=exp�−r2 /w2�c+. To match
these conditions the following superposition of the
TE and TM modes is taken E±=�u,v���e�±��o��
with generating functions ��s�= �i /2�s���vG�s�dz
=−�iZs /2v�s�G�s�, or, explicitly,

E+ =
1

2
G�e� +

1

2
G�o�, �1�

E− =
uv + iZe/�e

2v2 G�e� −
uv + iZo/�o

2v2 G�o�. �2�

Note that the c− component E− carries a double-
charge vortex and OAM, E−�r→0,� ,z�
→r2e2i�w2��e

2 /Ze
2−�o

2 /Zo
2� /4, here r2=uv and �=arg u.

More generally the input Gaussian has an arbitrary
polarization, E�r ,z=0�= �ac++bc−�exp�−r2 /w2�, so

that the solution above is given by �a ,b�= �1,0�. In
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the opposite case, �a ,b�= �0,1�, the solution is given
for Eqs. (1) and (2) with E+↔E− and u↔v. The gen-
eral solution is obtained by the linear superposition
with amplitudes �a�2+ �b�2=1.

To elucidate the coupling between the SAM and
OAM for Gaussian beams we note that uniaxial crys-
tals have usually weak birefringence, no−ne
�10−1–10−3, so that the anisotropy and its conse-
quence, the spin-orbit coupling, can be considered as
a perturbation. Introducing the average refractive in-
dex n= �no+ne� /2 and the small parameter �= �no
−ne� /n�1 we obtain �o=��1+� /2� and �e���1
−3� /2�, where �=kn /2, and we keep only the terms
of the leading order in �. Applying such a procedure
to Eqs. (1) and (2) we derive the following represen-
tation of the general solution, �E+,E−�T�M̂�a ,b�TG,
where G=−�i�w2 /Z�exp�i�r2 /Z� with Z=z− iz0, z0
=�w2, and the transformation matrix

M̂ = � C Se−2i�

Se2i� C 	 = C�̂0 + ST̂, �3�

T̂ = �̂x cos�2�� + �̂y sin�2��, �4�

where �̂0 is identity matrix and �̂x,y are Pauli spinor
matrices, C=cos 	 and S=−i sin 	 with 	=��r2z /Z2.
Solution in this form is valid everywhere in the crys-
tal if the anisotropy is small, ��1.

The matrix representation given by Eqs. (3) and (4)
allows one to explore the dynamics of polarization
conversion in clear details. Because matrix �̂0 does
not change initial polarization state, the first term
C�̂0 describes the loss of power of the input beam. In
contrast, the second term in Eq. (3), ST̂, shows the
power gain experienced by the circularly polarized
component that is orthogonal to the initial one and
the appearance of OAM compensating the loss of
SAM. More precisely, the matrix T̂ changes the hand-
edness of circular polarization and describes the ap-
pearance of a vortex with a double topological charge,
�l�=2, with the sign opposite to the SAM.

Experimentally accessible quantities to retrieve
the optical spin-to-orbital conversion are the
reduced powers of two components, P±/P0
= �2/�w2����E±�2dxdy, where P0 is the input power.
These quantities are plotted in Fig. 1(a) in the case
�a ,b�= �1,0� and two different beam waists. Theoret-
ical curves are obtained [9,10] by using Eqs. (1) and
(2), P±/P0= 1

2 
1± �1+z2 /L2�−1�, with L=2�e�ow2 / ��o
−�e��z0 /�. The angular momenta normalized to the
total angular momentum are shown in Fig. 1(b); they
are defined as follows: SAM±= ±P±/P0 and OAM±
= l±P±/P0 with l+=0 and l−=2.

In our experiments we used uniaxial calcite crystal
samples that are cut perpendicularly to the optical
axis into 10 mm
10 mm
z mm slabs for z
=1. . .14 mm with steps of 1 mm. Linearly polarized
light from a He–Ne laser operating at wavelength �
=633 nm (no=1.656 and ne=1.458) is converted into
circular polarization using a quarter-wave plate. The

beam is then focused by a lens �f=25 mm� onto the
sample whose optical axis coincides with the direc-
tion of propagation. The output beam is collimated by
a second lens �f=100 mm� and passes through a sec-
ond quarter-wave plate and a polarizing beamsplit-
ter, which allows us to separate its orthogonally po-
larized double-charge optical vortex and fundamental
Gaussian components.

The intensity distributions of the c+ �l=0� and c−

�l=2� circularly polarized components of a monochro-
matic beam are shown in Fig. 2 for various propaga-
tion distances z. Both circular components exhibit
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Fig. 1. (Color online) Transfer of normalized (a) powers
and (b) angular momenta between c+ (red, green, plus) and
c− (black, blue, minus) circularly polarized components.
Curves, theory; markers, experiment. The beam waist w
=4.59 �m (squares, dashed curves) and w=11.02 �m
(circles, solid curves).
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Fig. 2. (Color online) Experimentally measured intensity
profiles for two components �E±�2 of the laser beam with �
=633 nm and w=4.59 �m. The thin (red) curves in the bot-
tom diagrams were calculated using Eqs. (1) and (2), and
the thick (black) curves are obtained by averaging the ex-

perimental ring profiles over azimuth.
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annular profiles while spreading during propagation,
which correspond to dislocation rings. Dark spots can
be observed at the center of the images for l=2. These
spots support the evidence of the phase singularity in
the center of the helical beam, which is confirmed by
the charge two singular interference pattern when
the beam is superimposed with the fundamental
Gaussian beam (not shown). We also compare in Fig.
2 the measured and calculated radial intensity pro-
files of the beams. The dislocation rings, the power
reduction–rise of the c± components are all repro-
duced quantitatively with a good agreement.

Analogous experiments were performed using a
circularly polarized white-light input quasi-Gaussian
beam derived from a halogen lamp with a power of
50 W and angular divergence 8°. Light from the lamp
passes first through the bundle of optical fibers (with
an aperture of 5 mm) and then through an IR filter
that limits the spectral range to 440–800 nm. The
beam is then collimated by a microscope objective
and an aperture thereby attaining a nearly Gaussian
intensity profile. After the aperture, the light passes
through a polarizer and an achromatic quarter-wave
plate, thus acquiring circular polarization. Other de-
tails of the setup are the same as for monochromatic
light.
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Fig. 3. (Color online) Intensity profiles of the circularly po-
larized components (E+, top row; E−, bottom row) of a
white-light beam at the output of calcite slabs with differ-
ent thicknesses. Bottom diagram: power of three main
spectral components versus z for w=4.33 �m. Solid curves,
markers: theory, experiment. Blue, diamonds: �=440 nm;
green, triangles: �=550 nm; red, squares: �=630 nm; and
black, circles: total white light with mean wavelength �̄

=0.573 �m and spectral width ���0.36 �m.
Figure 3 shows the intensity distribution (top) and
the power dynamics (bottom) of the polarization con-
version for a white-light beam. The powers of the
main spectral components are obtained using colored
glass filters. The power dynamics of each spectral
component follows the analytical formula but with its
own parameter L���. Using known data for the dis-
persion of calcite crystals, we find L�1.75 mm for
blue, 1.44 mm for green, and 1.28 mm for red light.
The corresponding predicted powers shown in Fig. 3
solid curves) demonstrate a good agreement with ex-
perimental data (circles).

In conclusion, we have studied theoretically and
experimentally the dynamics of optical spin-to-
orbital angular momentum conversion using circu-
larly polarized Gaussian beams propagating along
the optical axis of perpendicularly cut uniaxial crys-
tal slabs. Theory well describes experimental obser-
vations for both monochromatic and polychromatic
light beams.
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