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We demonstrate experimentally that a one-dimensional photonic crystal with a homeotropic nematic liquid
crystal defect behaves as a polarization-sensitive nonlinear all-optical device. We study statics and dynamics
of the nonlinear optical response for linearly and circularly polarized beams and show enhanced light sen-

sitivity and polarization self-modulation effects. © 2009 Optical Society of America
OCIS codes: 190.0190, 230.1150, 230.3720, 230.4320.

Since the introduction of the photonic crystals con-
cept, considerable advances have been achieved in
tailoring material architectures toward a versatile
structural control of light propagation [1]. The optical
properties of photonic crystals can be tuned by exter-
nal fields that offer flexible technical opportunities
when designing reconfigurable optical devices.
Among available strategies, liquid crystals (LCs) are
recognized as unique materials that combine bire-
fringence and periodic spatial ordering with a pro-
nounced sensitivity to external fields [2,3]. Thermal
and electrical tuning have been achieved for photonic
structures infiltrated by LCs [4-6]. The manipulation
of light by light in photonic LC fibers [7], one-
dimensional natural cholesteric LC photonic struc-
tures [8], or planar photonic crystals [9] is based on
resonant LCs mixtures, where the LC order param-
eter is optically controlled through the thermal or
isothermal phase transition. However, only a few
studies on LC infiltrated photonic structures are de-
voted to the nonresonant case based on orientational
nonlinearities of nematic LCs (NLCs), including the
studies of periodic structures with an NLC defect
[10-12].

Here we demonstrate that a one-dimensional pho-
tonic crystal with an NLC defect behaves as a
polarization-sensitive nonlinear all-optical device.
We perform the passive and active optical character-
ization for linearly and circularly polarized light. De-
fect modes are shown to significantly increase the
NLC optical sensitivity. In the circular polarization
case, self-sustained polarization dynamics is ob-
served, which can be easily converted into amplitude
self-modulation using polarizing optics.

Experiments are performed using an NLC (E7) mi-
crowedge sandwiched in between two identical di-
electric periodic structures made of seven alternating
layers of SiO5 and TiOy with thicknesses of =91 and
=55 nm, respectively. The microwedge has an aver-
aged thickness of (L)=23 um and an apex angle of
a~0.6 mrad, as illustrated in Fig. 1. The inner sur-
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faces of the two dielectric stacks are chemically
treated by surfactant cetyl trimethyl ammonium bro-
mide to ensure a strong homeotropic alignment.
Hence, the local averaged molecular orientation rep-
resented by a unit vector n, called the director, is uni-
formly parallel to the z axis at rest (Fig. 1). The setup
consists of a cw laser, operating at wavelength of A
=532 nm, that is focused at normal incidence on the
sample using a 10 cm focal length lens (Fig. 1). The
beam spot at the sample location has a Gaussian pro-
file with a wy=11 wm waist at exp(-2) of its maxi-
mum intensity. A half-wave plate and a polarizer con-
trol the input beam power whose polarization is
adjusted by a quarter-wave plate. The output light is
collected by a second lens and the intensities of its
(x,y) or left- or right-handed circularly polarized
electric field components, I, , and [, are monitored
using a quarter-wave plate placed in front of a
Wollaston prism and two photodiodes (Fig. 1).

The use of a microwedged NLC defect layer allows
the spectral characterization and adjustment of the
photonic structure at a fixed wavelength. Indeed, the
optical defect modes frequencies arising from the pe-
riodicity breaking depend on the optical path of the
NLC wedge, 27n , L(x)/\, where n | is the refractive
index perpendicular to n and L(x) is the local wedge
thickness. From an experimental point of view the
lateral displacement of the whole structure along the
x axis (Fig. 1) enables one to obtain an equivalent
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Fig. 1. Expemmental setup. N2 and N/4, half- and
quarter-wave plates; P, polarizer; L, lens; DPS, dielectric
periodic structure; NLCW, NLC microwedge; WP, Wollas-
ton prism; PD, 5, photodiodes. Right: transmission fringes
pattern when the structure is illuminated with a spatially
extended laser beam.
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transmission spectrum, in the limit of «<1, as shown
in Fig. 2(a) where the beam power is sufficiently low
to prevent any light-induced effects. In Fig. 2(a), the
solid curve is a multi-Lorentzian fit, and the fine
structure of a single peak is given in Fig. 2(c). Nu-
merically the problem is conveniently solved in the
plane-wave approximation (z spatial dependence
only) [11] by using the Berreman 4 X4 matrix ap-
proach [13]. By taking an ideal parallel NLC slab of
variable thickness L around (L), which is the near-
est value to (L) that matches a defect mode fre-
quency, we obtain the transmission spectra shown in
Fig. 2(b).

We measure a free spectral range Ax=290+1 um,
which gives an estimate for the apex angle «
=\/(2n | Ax). Taking the typical value n | =1.52 we ob-
tain a=0.6 mrad. Clearly, two distinct differences
emerge when comparing observations to simulations.
Namely, (i) the maximal transmission, 7', associ-
ated with the defect mode resonances and (ii) the
transmission peaks FWHM, dx. First, Tyaxexp
=0.18+0.03 [Fig. 2(a)] whereas the predicted value is
Thax=1 [Fig. 2(b)]. Second, dxex,=26.8+1.6 um [Fig.
2(c), solid curve] whereas we calculate ox=4.8 um
[Fig. 2(c), dashed curve]. Such discrepancies can be
explained noting that the lateral displacement of the
beam during multiple reflections reduces the visibil-
ity of the interference process, which leads to a lower
Thax and a larger & as much as the ratio wy/Ax is
large.

The detuning parameter, originally defined in the
spectral domain as A—\; where \; is the nearest de-
fect mode frequency from the laser wavelength [11],
is controlled here via lateral positioning of the struc-
ture. This allows us to evidence the drastic power re-
duction for activating the NLC by light through the
optical Fréedericksz transition [11]. For this purpose
we set the detuning parameter to zero and monitor
the transmitted power, Py, as a function of the in-
cident power, P;,,.;. The results are shown in Fig. 3
for a linearly pofarlzed beam. At low power we ob-
serve a linear dependence whose slope defines the
maximal transmission for the selected defect mode.
Above threshold power Py,=9.7+0.3 mW (Fig. 3), the
behavior still exhibits linear features but with a
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Fig. 2. Transmission versus beam waist lateral x position.
(a) Experimental data (symbols) and multi-Lorentzian fit
(solid curve). (b) Numerical result. (¢) Single normalized
transmission peak located at x=x, the dashed curve being
the numerical result.
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Fig. 3. Output versus input power. (a) Experiment. The

dashed line indicates the reorientation threshold of the L.C

defect layer. (b) Numerical results. I is the intensity nor-
malized to the reorientation threshold intensity.

much less steep slope. Such a transmission decrease
for P>P, indicates effective refractive index
changes of the NLC layer, i.e., all-optical reorienta-
tion. This threshold should be compared to the one
obtained using a single homeotropic NLC parallel
slab with thickness L=(L) and identical beam waist.
By looking at the transverse intensity profile of the
output beam, which is altered by self-focusing effects
above threshold, as a function of the input power we
measure Py, g,,=100+5 mW. Hence a typical power
threshold reduction factor fu,~10 is reached,
whereas we calculate f=25. The discrepancy again
comes from the less light confinement at the defect
modes owing to the microwedge structure. Above
threshold, the output power P, is almost constant
independently of the input power Pj,,; [Fig. 3(a)l, in-
dicating that any increase of the latter is almost com-
pensated by a drop in the transmission due to the de-
fect mode frequencies redshift associated with a LC
reorientation amplitude increase [11]. In fact, this
two-slope behavior agrees with simulations [Fig.
3(b)] and confirms another theoretical result of [11]
under linear polarization, namely, sharp change of
the transmission during reorientation, which is
intimately related to the presence of the periodic
structure.

For the linear polarization case, the above thresh-
old orientational states are static, and output polar-
ization is unchanged with respect to the input one,
whereas we find a more complicated picture when the
incident polarization is circular. In practice, the third
normalized Stokes parameter s; of the incoming
beam is set to |sg|>0.99, an ideal circular polariza-
tion being defined by |ss|=1. Above the threshold, we
observe temporal oscillations of I, ,(¢). This is demon-
strated in Fig. 4(a), where the signal I,(¢) exhibits a
periodic behavior just above the reorientation thresh-
old when the detuning parameter is set to zero, as
confirmed by the fast Fourier transform shown in
Fig. 4(b). In addition, I, are found to be constant [in-
set of Fig. 4(a)]; so is the total output power. Thus,
the effective refractive index of the NLC defect layer
is time independent. By introducing the polar (©)
and azimuthal (®) angles to define the director, n
=(sin O cos ®,sin O sin @, cos O), this case is charac-
terized as 9,0=0 and 4,0 # 0. Since it is known [14]
that (i) ordinary and extraordinary waves are
coupled inside a twisted (9,&+#0) and reoriented
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Fig. 4. (a) Intensity of x polarized component of output

light versus time under circular incident polarization. In-
set: one of the two circularly polarized components. (b) Fast
Fourier transform of I,(¢).

(9,0 # 0) NLC and (ii) polar optical torque directly de-
pends on extraordinary wave intensity, we conclude
that the twisted distortions are also time indepen-
dent, 9,,®=0 (if not, 4,0 #0).

The observed polarization dynamics thus results
from the regular rotation of the output polarization
ellipse in the (x,y) plane. In fact, this is the signature
of the director precession around the z axis, at con-
stant frequency v, as a consequence of continuous
light spin angular-momentum transfer to the bire-
fringent NLC [15]. In that case, one has ¢, d=27v
where the molecular rotation frequency v is half the
frequency of I(¢) owing to the m-rotation invariance
of the polarization ellipse.

An estimate of the rotation frequency is grasped
from the single-slab case. Indeed, at the reorientation
threshold we get, in the limit A <L, the analytical ex-
pression vg,,=p(1-cos A)/(277A) [16], where A= 7 is
the total light-induced phase delay; 7 is a character-
istic orientational relaxation time, with 7=0.5 s for
L=23 um; and p=[1+2L/(mw,)]? is a correcting fac-
tor accounting for finite beam size effects [17], with
p=3.8. We get vg,,=720 mHz, which is a few times
higher than the observed value »=110 mHz [Fig.
4(b)]. Observations thus indicate that the light—
matter spin angular momentum transfer processes
strongly depend on the presence of the periodic struc-
ture. The theoretical description of such processes is
under current investigation.

The application potential of such structures is
demonstrated here in terms of polarization dynam-
ics, which can be further converted into amplitude
modulation by using polarizing optics [Fig. 4(a)].
However, pure amplitude self-modulation is ex-
pected, too, in the presence of nutation regimes
(3,0 #0) that are already known to appear in the
single-slab geometry [18].

In conclusion, we have experimentally demon-
strated all-optical switching of a one-dimensional di-
electric periodic structure with a homeotropic NLC
defect, including the drastic reduction of the optical
reorientation threshold and a self-sustained oscilla-
tory dynamics for circularly polarized light associ-
ated with a rotation of the director. These results
suggest an alternative approach toward all-optical
LC infiltrated photonic structures that exhibit both
phase and amplitude self-modulation of the transmit-
ted light.
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