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We report on the exact resolution of the problem of reflection and refraction of exact circularly polarized
Bessel vortex beams impinging at normal incidence on a planar dielectric interface between two isotropic and loss-
less media. On the one hand, we demonstrate the generation of a new vortex state both in the reflected and refracted
fields. On the other hand, we show the possibility to completely convert, at reflection, the incident vortex beam into
a vortex beam with orthogonal polarization and topological charge changed by �2. The spin–orbit interaction of
light occurring at the planar interface is identified as the mechanism responsible for these effects. © 2012 Optical
Society of America
OCIS codes: 260.2110, 070.3185.

Optical vortex beams (OVBs), which are light beams en-
dowed with phase singularities [1], are useful in commu-
nications, imaging, and micromanipulation [2]. The
behavior of OVBs at dielectric interfaces is a basic con-
sideration when light–matter interaction is considered. In
particular, the reflection and refraction of OVBs on pla-
nar interfaces has been extensively studied in the frame-
work of the paraxial approximation. Subtle effects that
involve both the spin and orbital contribution of the an-
gular momentum of light actually occur at oblique inci-
dence [3,4]. At normal incidence, a common belief is
that both the polarization and topological charge (in
the laboratory frame) are preserved for both the re-
flected and refracted fields [1]. However, this is true only
in the paraxial limit where the cross-polarization cou-
pling, which leads to generation of new states, is known
to be negligible for paraxial Laguerre–Gaussian (LG) and
Hermite–Gaussian (HG) beams [5–8]. Besides, until now,
such effects have been analyzed in the beam spatial
domain only numerically [5–7].
Here we report on the exact analytical spatial domain

analysis of circularly polarized Bessel vortex beams
(CBVBs) of arbitrary topological charge—a particular
set of exact solutions of the Maxwell’s equations—at
normal incidence on a planar dielectric interface be-
tween two homogeneous, isotropic, and lossless media.
We show the generation of a new vortex state both in
transmitted and reflected fields. Moreover, we demon-
strate the possibility of complete conversion at reflection
of an incident CBVB into a new vortex state with ortho-
gonal polarization and topological charge changed by
�2. Such an efficient conversion results from the combi-
nation of nonparaxiality and the specific angular spec-
trum structure of Bessel beams (BBs). Therefore, the
full conversion is a unique property of Bessel vortices
that can not be achieved with LG and HG beams. More-
over, we identify the optical spin–orbit interaction occur-

ring at the planar interface as the mechanism responsible
for the reported effects.

CBVBs of arbitrary topological charge l propagating
in the z direction in the cylindrical coordinate system
(r, φ, z) with orthonormal basis (er , eφ, ez) are described
by the following electric and magnetic fields:

E � �Jl�αr�er � iσJl�αr�eφ
− iσ tan θqJl�σ�αr�ez�ei��l�σ�φ�βqz�;

H � f−iσ�cos θqJl�αr� �
l� σ

kqr
tan θqJl�σ�αr��er

� �cos θqJl�αr� � σ tan θq sin θqJ 0
l�σ�αr��eφ

− sin θqJl�σ�αr�ezgei��l�σ�φ�βqz�: (1)

Here, σ � �1 stands for circular polarization states, Jl
is the lth order Bessel function of the first kind,
J 0
l�x� � dJl ∕ dx, α � kq sin θq and βq � kq cos θq are, re-

spectively, the transverse and longitudinal wave numbers
with kq � k0nq, k0 the wave number in vacuum and nq the
refractive index where the CBVB propagates. In addition,
the time-dependent factor e−iωt is omitted. The name of
such a beam is chosen on purpose since (i) it belongs
to the family of nondiffracting BBs [9], (ii) its polarization
state defined in the transverse plane is uniformly circular
and (iii) its field possesses a global phase factor of the
form eilφ. Finally, let us recall that a BB can be conceived
of as an evenly distributed superposition of plane waves
whose wave vectors lie on a cone, making an angle θq �
arctan�α ∕ βq� with the beam propagation axis.

The problem of CBVB reflection and refraction at nor-
mal incidence on a planar dielectric interface is treated
by considering the plane z � 0 as the interface between
two dielectric media with refractive index ni for z < 0
and nt for z > 0. In that case, since the TM-polarized
and TE-polarized BBs [10] of arbitrary order m preserve
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their spatial structure, we will use them for our analysis.
Following the results in [11–13], TM-polarized and TE-
polarized BBs of order m can be expressed as

E�q�
TM � τ�q�p �− cos θqξ⊥ � i sin θqJm�αr�ez�ei�mφ�βqz�;

H�q�
TM � τ�q�p nqη⊥e

i�mφ�βqz�;

E�q�
TE � τ�q�s η⊥e

i�mφ�βqz�;

H�q�
TE � τ�q�s nq�cos θqξ⊥ − i sin θqJm�αr�ez�ei�mφ�βqz�; (2)

where q � �i; r; t� stands for the incident, reflected, and
transmitted fields, respectively, and the transverse vec-
tors ξ⊥ and η⊥ are defined as

ξ⊥ � Jm
0 �αr�er � i

m
αr

Jm�αr�eφ;

η⊥ � i
m
αr

Jm�αr�er − Jm
0 �αr�eφ; (3)

where the expression of the fields parameters that
depend on the index q are summarized in Table 1.
Noticeably, one can recognize (i) the expressions of θr

and θt as the Snell’s law that governs the reflection and
refraction angles for plane waves and (ii) the expressions
of τ�q�p and τ�q�s as the Fresnel equations for p and s polar-
ized plane waves [14]. Such an analogy is explained by
considering the angular spectrum representation of a
BB that involves a single angle of incidence for all the
constituting partial plane waves.
The incident CBVB state jψi�i� ≡ jσ; l; ii given by

Eq. (1) is represented in terms of the jTM�i�
m i and jTE�i�

m i
states as

jψi�i� � −ijTE�i�
l�σi −

σ

cos θi
jTM�i�

l�σi: (4)

Then, the reflected and transmitted states jψi�q� are
obtained from Eq. (4), accounting for the behavior of
the TM and TE states at the interface,

jψi�q� � −ijTE�q�
l�σi −

σ

cos θi
jTM�q�

l�σi; (5)

where the reflected and transmitted the TM and TE states
can be expressed as linear superposition of two distinct
CBVBs. Namely, by using Eqs. (1) and (2), it can be
shown that

jTM�q�
m i � τ�q�p

2
cos θq�j − 1;m� 1; qi − j1;m − 1; qi�;

jTE�q�
m i � i

τ�q�s

2
�j − 1;m� 1; qi � j1;m − 1; qi�: (6)

Combining Eq. (5) and Eq. (6) we obtain

jψi�q� � c�q�1 jσ; l; qi � c�q�2 j − σ; l� 2σ; qi; (7)

where the coefficients c�q�1;2 are given by

c�t�1;2 �
1
2

�
τ�t�s � τ�t�p

cos θt
cos θi

�
;

c�r�1;2 �
1
2

h
τ�r�s ∓τ�r�p

i
: (8)

The analysis is completed by examining how the energy
of the incident beam is divided between the two
secondary beams. For this purpose, we define the trans-

mittance T � limρ→∞
J �t�

z

J �i�
z
and reflectance R � limρ→∞

��� J �r�
z

J �i�
z

���
of the incident CBVB, where J �q�

z � c
8π Ref∬D

��E�q� ×H�q��� · ez�dxdyg is the time-averaged energy flux
of the beam through a diskD of radius ρ lying in the z � 0
plane and centered on the origin; c is the speed of light in
vacuum, and Re and the asterisk refer to real part and
complex conjugation, respectively. After calculations
we obtain:

T � �τ�t�p �2 � �τ�t�s �2 cos2 θi
1� cos2 θi

nt cos θt
ni cos θi

; (9)

R � �τ�r�p �2 � �τ�r�s �2 cos2 θi
1� cos2 θi

: (10)

Equation (7) emphasizes the generation of a new
vortex state due to the presence of the interface. The
transmitted and reflected fields appear as the superposi-
tion of two distinct CBVBs: (i) jσ; l; qi, with the same po-
larization and topological charge (in the laboratory
frame) as the incident vortex field and (ii) j − σ; l� 2σ; qi,
with orthogonal polarization and a topological charge
that differs by 2σ. This allows us to identify the optical
spin—orbit interaction occurring at the planar interface
as the mechanism responsible for the effect that belongs
to the broad class of spin-to-orbital angular momentum
conversion phenomena that take place in focusing, scat-
tering, and imaging systems [15].

The dependence of the reflection and refraction of an
incident CBVB jσ; l; ii on the characteristic cone angle θi
are displayed in Fig. 1 for two typical situations that are a
refractive index ratio N � nt ∕ni � 3 ∕ 2 [panels on the
left] and N � nt ∕ni � 2 ∕ 3 [panels on the right].

As shown on the first two rows, the creation of the
vortex states j − σ; l� 2σ; ti and j − σ; l� 2σ; ri em-
bedded in the transmitted [panels (a) and (d)] and re-
flected [panels (b) and (e)] fields, respectively, occur
whatever θi > 0 for which c�r�2 ≠ 0 and c�t�2 ≠ 0. The pro-
cess is efficient, however, for sufficiently large incident

Table 1. Parameters for the TM-polarized
and TE-Polarized BBs

q i r t

θq θi π − θi arcsin
�ni
nt

sin θi
�

βq ki cos θi −βi βi
nt cos θt
ni cos θi

τ�q�p 1 tan�θi−θt�
tan�θi�θt�

2 sin θt cos θi
sin�θi�θt� cos�θi−θt�

τ�q�s 1 − sin�θi−θt�
sin�θi�θt�

2 sin θt cos θi
sin�θi�θt�
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cone angles, which emphasizes the role played by non-
paraxiality.
Still, the incident jσ; l; ii can be completely converted

into the reflected one j − σ; l� 2σ; ri. This occurs for
θi � θTIR, where θTIR is the total internal reflection angle
[above which T � 0 and R � 1, as shown in Fig. 1(f)] de-
fined by sin θTIR � N when N < 1. As seen in Fig. 1(e), at
the critical angle we have

c�r�1 �θTIR� � 0; c�r�2 �θTIR� � 1: (11)

Note that, in the spectral domain, Eq. (11) corresponds to
the change of the handedness for each circularly polar-
ized plane wave components of a CBVB. This explains
why the full conversion can not be achieved for LG
and HG beams. In addition, Eq. (11) points out the key
role of the interface characteristics since full conversion
at reflection is obtained for relatively low cone angles for
small enough N .

Another particular situation corresponds to θi � θB,
θB being the Brewster angle defined by tan θB � N when
N > 1. In that case τ�r�p � 0 and c�r�1 � c�r�2 , as shown
in Fig. 1(b), thereby leading to jψi�r� � −ijTE�r�

l�σi.
This offers an alternative option to the recently intro-
duced method to generate an azimuthally polarized field
from the reflection at normal incidence on a planar
interface of a zeroth-order BB whose cone angle matches
the Brewster angle [16]. In our case, an azimuthal
polarization state is obtained from the reflection of an
incident CBVB with topological charge l � −σ :E�r� �
−iτ�r�s J1�αr�eiβrzeφ.

Finally, we note that the CBVB described by Eq. (1)
identifies with the formulation of nonparaxial vortex
beams given by Eq. (3.3) in [17] when using E�κ� �
δ�κ − α� for the spectral function. Consequently, our ana-
lysis can be readily generalized toward the exact spatial
domain treatment of the reflection and refraction of
arbitrary optical vortices at normal incidence on planar
interfaces.

To conclude, the behavior of exact circularly polarized
Bessel vortex beams impinging at normal incidence onto
a planar isotropic dielectric interface has been described.
The reflection and refraction of such optical vortices are
accompanied with the generation of a new vortex state
whose topological charge changes by �2, depending on
the handedness of the incident circular polarization state
as a result of the spin–orbit interaction of light mediated
by the interface. In particular, we show that (i) total con-
version of the incident vortex into a distinct one and
(ii) generation of an azimuthally polarized beam can
be achieved in the reflection mode.
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Fig. 1. (Color online) Dependence of the reflection and refrac-
tion of an incident CBVB on the characteristic cone angle θi for
a refractive index ratioN � nt ∕ni � 3 ∕ 2 [panels on the left] and
N � 2 ∕ 3 [panels on the right]. First and second rows: c�τ�k for the
transmitted [panels (a) and (d)] and reflected [panel (b) and (e)]
beams. Third row: transmittance T and reflectance R. The sha-
dowed area on the right column refers to the total internal re-
flection regime when θi > θTIR.
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