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Optical angular momentum conversion
in a nanoslit: comment
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In a recent work [Opt. Lett. 37, 4946 (2012)], the spin-to-orbital optical angular momentum conversion from a sub-
wavelength slit having a circular shape has been reported. In particular, the conversion efficiency was claimed to be
independent of the slit dichroism. Here, we correct such a statement and demonstrate that dichroism strongly
influences the process of optical vortex generation. © 2013 Optical Society of America

OCIS codes:
nanostructures.
http://dx.doi.org/10.1364/0L.38.003890

Recently, Chimento and coworkers investigated the
effect of a circular subwavelength slit on the orbital an-
gular momentum content of light [1]. A subwavelength
slit indeed behaves as a birefringent retarder whose main
axes are directed parallel and perpendicular to it [2]. This
enables a circular slit to partially convert an incident cir-
cularly polarized light field into a contra-circularly polar-
ized one carrying an on-axis optical phase singularity
with a topological charge of two [1]. In particular, the ef-
ficiency 5 of the polarization conversion process has
been claimed to be independent of the slit dichroism [1].

The aim of this Comment is to correct the latter state-
ment. Dichroism indeed strongly influences the process,
as demonstrated hereafter in the more general frame-
work of so-called g-plates [3], which consist of slabs of
inhomogeneous and optically anisotropic slabs of thick-
nass L that have: (i) an azimuthal distribution of the ori-
entatipn of their optical axis of the form w(¢) = q¢ + ¢,
with q integer, ¢ the usual azimuthal angle in the (x,y)
plane of the slab, and ¢, a constant and (ii) a uniform
birefringent phase retardation A = ky(n; —n, )L with
ko the wavenumber in vacuum and n , the refractive in-
dices parallel and perpendicular to the optical axis.

Let us consider the case study of an incident circularly
polarized plane wave that propagates through a dichroic
g-plate of thickness L with an input facet located at
2 =0 and with attenuation coefficients 6, = e and
5, = e, where q; and a, are the amplitude attenua-
tion constants for the polarizations parallel and
perpendicular to the optical axis, respectively. The
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Fig. 1. (a) Map of polarization conversion efficiency n as a

function of birefringent phase retardation A and dichroism
parameter 6. (b) 5 versus 6 for A = 0, /2, and x, which corre-
spond to special cases of full-wave, quarter-wave, or half-wave
dichroic plates, respectively.
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incident electric field (2 < 0) is expressed as E;, =
Eye i@=%? ¢ where ¢, = (x + ioy)/~/2, 6 = +1, refers
to the orthonormal circular polarization basis. Neglecting
diffraction effects, the output light field at 2 =L is
obtained in the laboratory frame by using the Jones

formalism,
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Expressing E,; in the circular polarization basis, one
gets, up to a phase factor e i@!+i(A/2)+ikgn, L
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By introducing the dichroism parameter 6 = §,/9, if
0, <oy and 6 = 9y /6, if 5, > 9y, the efficiency 7 is de-
fined as the intensity ratio 7 = (|[Eqy - €,|?)/|Eow/?, With
the asterisk being a complex conjugation, expressed as
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sin?(A/2).  (3)

The spin-to-orbital optical angular momentum conver-
sion thus strongly depends on the dichroism whatever
is g, as illustrated in Fig. 1. The “usual” formula n =
sin?(A/2) only applies without dichroism, i.e., § = 1.
For the case of 6§ = 0 in Fig. 1, this is a special case of
a linear polarizer with an azimuthally varying axis.
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