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We present an electromagnetic model describing liquid-core liquid-cladding optical fibers sustained by light
radiation pressure that encompass the contribution of all the allowed propagating modes. Various sequences of
unstable and stable equilibrium liquid column diameters are found above a threshold power. The nontrivial
relationship between a single-valued or multivalued column diameter with a mono- or multimodal structure of
the electromagnetic field is analyzed, and the influence of the light-matter interaction geometry is estimated.
Moreover, we propose a geometrical interpretation based on a ray optics approach that brings an intuitive
understanding of the role played by the higher-order propagation mode in the occurrence of a multistable
liquid-core behavior.
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I. INTRODUCTION

While adaptive optics is now recognized as a well-
established technique to improve the performance of optical
systems by checking for distortions and rapidly compensat-
ing for them using deformable mirrors, lenses, or variable-
index materials �1�, it has recently been extended to the con-
ception of new optical systems with variable properties and
potential self-adaptation. Using the softness of liquids, ad-
vances were first directed toward tunable lensing. On the one
hand, externally driven gradient-index microlenses, such as
bulk electro-optical liquid-crystal devices �2�, used bulk ef-
fects. On the other hand, light focusing has been actuated by
liquid interface deformation using electrowetting �3,4�, ra-
diation pressure �either optical �5� or acoustical �6��, and
recently microfluidic devices �7�. Although the actual level
of control and reliability of these adaptive liquid lenses
found nice applied developments, particularly as active cam-
era lenses for cellular phones, such a strategy is almost ab-
sent in the case of optical guiding because stabilization of
free-standing liquid columns encounters a fundamental limi-
tation associated with the Rayleigh-Plateau instability �8�. A
liquid column classically breaks when its length exceeds its
circumference due to capillary forces. Strategies based on
electric fields �9–11� and acoustic radiation pressure �12�
were then prompted to try to stabilize static liquid columns.
Unfortunately, the Rayleigh-Plateau onset has been repelled
by less than a factor of 2, thus preventing any further use in
optical systems. A totally different approach, involving flow
focusing in microchannels, was implanted recently to bypass
the instability and finally build liquid-core–liquid-cladding
waveguides �13�. This elegant dynamic method offers a good
level of stability and control since the refractive indices can
be changed with the fluids, and the size and the path of the
liquid core can be varied with the fluid flow rates. However,
tunability cannot be actuated rapidly, due to the intrinsic in-

ertia of microfluidic systems, and optical guiding is a priori
not adapted to the incident light because the size of the liquid
core is controlled by liquid flow rates. That is why, up to
now, the route followed to build self-adapted optical fibers
from the liquid phase has been photopolymerization in order
to self-write solid optical waveguides in photosensitive or-
ganic materials �see, for instance, �14��. Although these po-
lymerized fibers are intrinsically self-adapted to the writing
beam, the process is not reversible and adaptation is lost as
soon as the size and wavelength of the input beam are
changed.

A few years ago, an optical technique relying on light
radiation pressure �15� demonstrated that �i� liquid columns
with aspect ratio well beyond the Rayleigh-Plateau threshold
can be stabilized by a laser wave propagating along the fiber
axis, �ii� these columns self-adapt in power and waist of the
propagating laser wave, and �iii� self-adaptation continuously
adjusts to the beam properties. These tunable optical fibers
can furthermore be oriented in any direction by tilting the
exciting beam. One can therefore advance the concept of
self-adapted liquid step-index optical fiber with total recon-
figurability and automatic optimization to the waist and
power of the exciting beam. Optically induced liquid col-
umns could thus be particularly efficient to control beam
propagation or to optimize light-coupling devices because
reversibility and self-adaptation considerably reduce the sen-
sitivity to precise mechanical alignments of optical compo-
nents and to the exact beam properties. Finally, by combin-
ing optics and microfluidics, self-adapted liquid waveguides
offer a new example of optofluidics system with active opti-
cal actuation �16�. However, even if very promising, no the-
oretical background has been advanced so far to describe the
mechanisms at the origin of the optical stabilization and tun-
ability in column diameter and orientation while understand-
ing the processes involved would clearly establish the back-
ground necessary for further applications. The purpose of the
present paper is to address these open issues.

In this work, we present an electromagnetic model de-
scribing dielectric liquid columns sustained by light radiation
pressure that prevents the column from collapsing through
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Rayleigh-Plateau instability. Considering the column as a
step-index liquid-core–liquid-cladding optical fiber, the light
radiation pressure is obtained from the Maxwell stress tensor
that encompass the contribution of all the allowed propagat-
ing modes. Steady-state column diameters depend on light-
matter interaction geometry, and various sequences of un-
stable and stable states are found above a threshold power. A
single column diameter is predicted when the beam diameter
is sufficiently small whereas a multivalued diameter is ex-
pected at larger beam diameter. Although the existence of
multistability for the core diameter is unambiguously associ-
ated with a multimodal structure of the electromagnetic field,
we show that a single valued core diameter can be either
obtained when the light field has a mono- or multimodal
nature. Finally, a geometrical interpretation based on a ray
optics approach is proposed and compared to the complete
electromagnetic model.

II. ELECTROMAGNETIC MODEL

A. General statements

We consider a dielectric column of liquid 2 in a liquid 1
as a semi-infinite cylinder of radius R=d /2 perfectly cen-
tered with an incident linearly polarized �17� �say, along x�
Gaussian beam propagating along z, as depicted in Fig. 1�a�.
The inner and outer refractive indices of liquid optical fiber
are n2 and n1, respectively, with n2�n1. This geometry cor-
responds to the simplest description of the experimental situ-
ation explored in �19�. In the latter reference, the fluid-fluid
interface of a quasicritical phase-separated liquid mixture is
illuminated by a linearly polarized focused laser beam as
sketched in Fig. 1�b�. The mixture is enclosed in a e
=1 mm thick fused quartz cell that is thermally controlled a
few kelvins above the critical temperature TC, where surface
tension vanishes. The phase 2, of height 0.5 mm, completely

wets the cell walls, inducing a wetting layer at the bottom of
the cell. At high enough power, typically hundreds of mW, a
perfectly beam-centered 0.5-mm-long stable liquid column
of phase 2 forms between the interface and the wetting layer
�see Fig. 1�b�� following an optohydrodynamic instability
�20�. A typical image of a light-sustained liquid column is
shown in Fig. 1�c�. Columns 1 mm long can as well be
stabilized in 2-mm-thick cells �21�.

Without loss of generality, we will further use the param-
eters that correspond to the experimental study of Ref. �19�,
which was performed at temperature T−TC=2 K: namely,
refractive indices n1=1.444 and n2=1.460 and surface ten-
sion �=1.75�10−7 N /m �22�. The intensity profile at z
=0—i.e., the altitude of the unperturbed interface—is

I�r� =
2P

�w2exp�−
2r2

w2 � , �1�

where r=�x2+y2, P is the total beam power, and

w = w0
�1 + �zoffset/z0�2 �2�

is the beam radius defined at e−2 of maximum intensity. In
Eq. �2� w0 is the beam waist, z0=�w0

2 /� the Rayleigh range,
and zoffset the offset distance between the plane where is lo-
cated the beam waist and the fluid interface �see Fig. 1�a��.
The laser wavelength is �0=514.5 nm, and �=�0 /n2 is the
wavelength in the incident medium �phase 2�.

In weightless conditions, the outward optical radiation
pressure �radiation, the inward Laplace pressure �Laplace aris-
ing from surface tension, and the component of the viscous
stress normal to the surface must balance on the surface of
the column. For a perfectly cylindrical vertical column, the
normal component of the viscous stress on the interface van-
ishes. Thus, the balance of the remaining surface forces is

�Laplace = �radiation, �3�

which determines the equilibrium solution for a liquid col-
umn with radius R. On the one hand, the left-hand side of Eq.
�3� is merely related to the curvature 1 /R of the liquid cyl-
inder as

�Laplace =
�

R
. �4�

On the other hand, the radiation pressure is estimated from
the normal discontinuity of the electromagnetic Maxwell
stress tensor �23� across the interface. Neglecting the Abra-
ham term oscillating at optical frequency, whose time aver-
aging over an optical cycle vanishes, one finds for the time-
averaged radiation pressure

�radiation =
r=R
��0��n1

2E1E1
T − n2

2E2E2
T�ur� · ur

−
1

2
�0�n1

2E1 · E1 − n2
2E2 · E2�	

t
, �5�

where ur is the unit radial vector, �0 the vacuum permittivity,
Ei the real electric field vector in fluid i, �¯�T the transpose,
and 
¯�t the time averaging. Using the boundary conditions
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FIG. 1. �a� Geometry of the problem. �b� Typical experimental
situation explored in �19�. The TEM00 mode of a cw laser is focused
at the fluid-fluid interface of the phase-separated liquid mixture
whose temperature is regulated above the critical temperature Tc.
The less refractive phase �labeled 1� is the denser one and the cell
thickness is e=1 mm. Above a threshold power, a liquid column of
phase 2 with diameter d=2R forms between the interface and the
bottom of the cell, as shown in panel �c� where d�8 �m for T
−Tc=2 K, w0=1.8 �m, and P=600 mW.
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for the dielectric fluids 1 and 2 at r=R, Et,1=Et,2, and
n1

2En,1=n2
2En,2, we get

�radiation =
r=R

�0
n2

2 − n1
2

4
�Et,22 +

n2
2

n1
2 En,22� , �6�

where Et,i and En,i are the tangential and normal of the com-
plex electric field in the fluid i.

Next, the calculation of the field distribution is done by
taking into account the waveguiding properties of the liquid
column that can be considered as a step-index liquid-core–
liquid-cladding optical fiber with radius R. Only the propa-
gating modes are further retained and, unless explicitly men-
tioned, we consider an incident beam whose waist perfectly
matches the liquid-liquid interface—i.e., zoffset=0.

B. Multimodal structure of the field

Following n1�n2, the propagating modes inside the col-
umn are assumed to be the linearly polarized LPlm modes
where integers �	0 and m�1 are, respectively, related to
their polar and radial characteristics �24�. Noting that the
incident Gaussian beam is cylindrically symmetric, only the
LP0m modes are excited. The electric field of the mode m is
written �note that the z component can be neglected in the
limit n2−n1→0 �24��

E�m� = E0
�m�Rm�r�ei
mzux, �7�

where E0
�m� is a constant and

Rm�r� = �
J0��mr�
J0��mR�

if r � R ,

K0�mr�
K0�mR�

if r 	 R ,� �8�

Jn and Kn being, respectively, the Bessel function of the first
kind and the modified Bessel function of the second kind.
Moreover, �m and m are the mth roots of the characteristic
equation that defines the LP0m mode �24�,

�m
J1��mR�
J0��mR�

= m
K1�mR�
K0�mR�

, �9�

with

��mR�2 + �mR�2 = V2, �10�

where V=k0R�n2
2−n1

2�1/2 is often called the normalized fre-
quency and k0=2� /�0. Finally, the propagation constant 
m
is defined following


m = �n2
2k0

2 − �m
2 �1/2 = �m

2 − n1
2k0

2�1/2. �11�

The field inside the column is the superposition of different
LP0m modes. The weight of the mode m is given by the
power transmission of the incident beam into that mode, Tm,
which is expressed as the normalized electric field overlap
integral

Tm =

��
0

�

E�m� · E�inc�r dr�2

�
0

�

E�m�2rdr�
0

�

E�inc�2r dr

, �12�

where E�inc��exp�−r2 /w0
2�ux is the incident Gaussian electric

field �recall that we assume zoffset=0�. We obtain

Tm =
8Fm

w0
2R2��

0

�

Rm�r�e−r2/w0
2
r dr�2

, �13�

where

Fm = � J1
2��mR�

J0
2��mR�

+
K1

2�mR�
K0

2�mR��−1

. �14�

The transmission coefficient and the total transmission T
=�mTm strongly depend on the column radius R and beam
waist w0 as shown in Fig. 2 where T and Tm are plotted as a
function of R for w0=1.8 �panels �a�� and 7 �m �panels �b��.
Note that only the fundamental mode LP01 always propa-
gates into the liquid fiber, which is a standard result �24�.
Higher-order modes m	2 appear above cutoff normalized
frequencies V��3.81,6.97,10.01,13.21,16.33,19.44� for
m= �2,3 ,4 ,5 ,6 ,7�, which correspond to cutoff radii R
��1.45,2.65,3.84,5.02,6.20,7.38� �m in the present case
�Fig. 2�. An overall increase of T with R is predicted; how-
ever, some peaks can be observed that correspond to indi-
vidual modal transmission peaks �Fig. 2�. The latter peaks
are related to mode matching between the incident Gaussian
field and the electric field distribution of a mode and are less
pronounced for small waists, as observed from the compari-
son between upper and lower panels of Fig. 2.
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FIG. 2. �Color online� Total transmission T �dashed line� and
transmission of the mode m, Tm �solid lines�, vs column radius for
�a� w0=1.8 �m and �b� 7 �m. The labels �1–7� corresponds to the
value of m, and the corresponding code color is m=1, red; m=2,
blue; m=3, black; m=4, green; m=5, magenta; m=6, orange; and
m=7, yellow.
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From knowledge of the multimodal structure of the light
field propagating into the liquid column, the radiation pres-
sure given by Eq. �6� can now be explicated, which is done
in what follows.

C. Light radiation pressure

The total radiation pressure exerted onto the column in-
terface results from the combination of all the LP0m modes
that are allowed to propagate inside the structure. Using the
approximated expression for the electric field given by Eqs.
�7� and �8�, Eq. �6� becomes, to the lowest order in n2−n1,
recalling that Rm�R�=1,

�radiation =
1

2
�0n�n2 − n1��

m

E0
�m�2, �15�

where n= �n2+n1� /2 is the averaged refractive index. The
estimation of the sum in Eq. �15� requires knowledge of the
constants E0

�m� of Eq. �7�. The latter are determined noting
that the flux of the z component of the Poynting vector of the
mode m across a plane perpendicular to the z axis equals the
power carried by that mode, Pm= 1

2�0nc��E�m�2dx dy where
c is the light speed. Therefore

Pm =
�0nc�R2

2Fm
E0

�m�2. �16�

Finally, combining Eqs. �15� and �16� and using Pm=TmP,
we obtain

�radiation = P
n2 − n1

�R2c �
m

FmTm. �17�

D. Equilibrium states and stability analysis

By inserting Eqs. �4� and �17� into Eq. �3� the equilibrium
equation reads

� − P
n2 − n1

�cR �
m

FmTm = 0. �18�

The column radius R is obtained by numerically solving Eq.
�18�. No equilibrium radius is found below a critical power
Pc. Above Pc, a discrete set of solutions �Req

�n�� of radii is
predicted. The later situation is illustrated in Fig. 3 for w0
=7 �m and P=500 mW, where the dependence of �radiation
and �Laplace on R is shown. The stability of steady-state so-
lutions is retrieved noting that, in the presence of an infini-
tesimal displacement dRur, the total surface force density
��radiation−�Lapace�R=Req

�n�ur has a restoring �amplifying� action
if R=Req

�n� is a stable �unstable� solution. The stability crite-
rion is thus written

� ��radiation

�R
�

R=Req
�n�

� � ��Laplace

�R
�

R=Req
�n�

, �19�

which is illustrated in Fig. 3, where solid and open circles,
respectively, correspond to stable and unstable equilibrium
column radii.

The dependence of the critical power Pc and radius Rc
=Req�P= Pc� on the beam waist is shown in Fig. 4. Although
Pc increases almost linearly with w0 �Fig. 4�a��, Rc exhibits a
Plateau-like behavior �Fig. 4�b�� that is related to the
branched structure of equilibrium diameters as a function of
power. This is shown in the insets �1 and 2� of Fig. 4�b�,
which, respectively, refer to w0=5 and 13 �m.

An overview of equilibrium solutions is displayed in Fig.
5 where the power dependence of the column diameter d and
normalized diameter d /w0 are, respectively, presented in
Figs. 5�a� and 5�b� for w0=1.8, 3.5, and 7 �m. Solid
�dashed� lines refer to stable �unstable� solutions. For small
beam waists �typically for w0�1.5 �m� a monovalued di-
ameter is predicted, while a more complicated sequence of
stable and unstable states is found at larger beam waists. It
turns out that each stable branch ending in the plane of pa-
rameter �P ,d� precisely corresponds to a cutoff radius. In
fact, a stable branch is associated with a well-defined number
of propagating modes, mmax, which is indicated by alterna-
tively shaded regions in Fig. 5�a�. Note that a single-valued
diameter does not necessarily imply a monomodal structure
of the field, but merely indicates that the higher-order mode
contribution to the total light radiation pressure is established
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FIG. 3. �Color online� Laplace pressure �dashed line� and radia-
tion pressure �solid line� vs column radius R for w0=7 �m and P
=500 mW. Solid and open circles correspond, respectively, to
stable and unstable equilibrium radii.
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smoothly, as illustrated by Fig. 2�a� where w0=1.8 �m.
Next, the influence of an offset between the incident beam

waist location and the liquid-liquid interface is explored.

E. Role of incident beam offset

Hereafter, we consider zoffset�0 �see Fig. 1�a��. From an
experimental point of view, this corresponds to a misalign-
ment of the focal spot of the incident beam with respect to
the liquid-liquid interface. Consequently, the modal transmis-
sion Tm is changed. Indeed, the incident electric field now
has an additional dependence in r due to wave-front curva-
ture � �see Fig. 1�a��,

E�inc� � exp�−
r2

w2 + i
n2k0r2

2�
�ux, �20�

where w is given by Eq. �2� and

� = − zoffset�1 + �z0/zoffset�2� . �21�

As expected, Eq. �21� gives a positive curvature when
zoffset�0, as sketched in Fig. 1�a�. Equation �12� is thus
modified according to the expression

Tm =
8Fm

w2R2��
0

�

Rm�r�e−r2�1/w2+in2k0/2��r dr�2

. �22�

Then, the equilibrium solutions are obtained by inserting Eq.
�22� into Eq. �18�. A summary of the results is presented in
Fig. 6, which shows the total transmission T and the normal-
ized diameter d /w0 for zoffset= �z0 /2 and �z0 using w0
=1.8 �Figs. 6�a� and 6�b�� and 7 �m �Figs. 6�c� and 6�d��.
Note that the result is independent of the sign of z0 as ex-
pected from the dependence on � of Eq. �22�.

We conclude that, within an experimentally realistic mis-
match zoffset�z0, the behavior of the column is not much
changed, rendering the experimental validation of the present
model �19� almost insensitive to residual misalignment of the
incident beam.

III. GEOMETRICAL INTERPRETATION

It is known that the light radiation pressure of a plane
wave exerted on a flat interface between two dielectrics gives
identical results either deriving it from the Maxwell stress
tensor �22� or ray optics approach �25�. Here, a geometrical
interpretation based on the multimodal structure of the light
field is particularly desirable in order to give a more intuitive
physical picture than the full electromagnetic approach pre-
sented so far, although we are aware that propagating modes
into the liquid-core–liquid-cladding optical fiber cannot be
considered as plane waves.

For this purpose we consider the ray optics analog of a
LP0m mode with power Pm as a plane wave which is totally
reflected at an angle of incidence, �m, lying between the criti-
cal angle for total internal reflection, �c=arcsin�n1 /n2� and
� /2 �see Fig. 7�a��. By construction, we have �m=� /2
−�m, where �m is defined from the propagation constant
given by Eq. �11�: namely, 
m=n2k0 cos �m. The dependence
of �m as a function of R is shown in Fig. 7�b�. The change of
linear momentum per photon associated to reflection at the
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and 7 �m �red�. Solid and dashed lines refer to stable and unstable
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interface is �pm= pm
+ −pm

− =2�n2k0 cos �mur �Fig. 7�a��,
which can be rewritten as

�pm = 2��mur, �23�

where � is the reduced Planck constant. Within this frame-
work, the radiation pressure for the mode m equals the linear
momentum change upon a single reflection per time and
area,

�radiation��m� = 2��m�m, �24�

where �m is the number of photons that reflect on the col-
umn wall per unit time and area.

Introducing the number of photons passing through a
cross section �R2 of the column per unit time, Nm, and the
length between two successive reflections, �m=2R tan �m
�Fig. 7�a��, we obtain

�m =
Nm

2�R�m
, �25�

with

Nm =
�mTmP

�k0c
, �26�

where, in the limit n1�n2, �m=�0
RRm

2 �r�r dr /�0
�Rm

2 �r�r dr is
the fraction of photons inside the core of the liquid optical
fiber �0��m�1�,

�m = Fm�1 +
J1

2��mR�
J0

2��mR�� . �27�

The total radiation pressure is finally obtained by summing
over all the propagating modes,

�radiation� =
P

2�R2ck0
�
m

�m�m
2 Tm


m
. �28�

The radiation pressure expressions obtained within a full
electromagnetic approach �Eq. �17�� and its ray optics analog

�Eq. �28�� are compared in Fig. 8, where the ratio
�radiation� /�radiation is calculated as a function of R for differ-
ent values of w0. Typically, the mismatch is important �as
large as 35%� at small R where diffraction effects becomes
significant. Conversely, the relative mismatch is below 10%
above R�3 �m, which corresponds to experimental situa-
tions explored in �19� as indicated by the horizontal bars in
Fig. 8. In addition, the overall trend at large R shows that the
geometrical interpretation is asymptotically valid when the
column diameter becomes large compared to the wavelength,
as expected. As a consequence, only small quantitative
changes are found when solving the equilibrium equation
using the ray optics approach. This is shown in Fig. 9 where
the power dependence of the column diameter is calculated
for w0=1.8 �panel �a�� and 7 �m �panel �b�� and compared
to the previously discussed electromagnetic results.

The geometrical interpretation allows a qualitative under-
standing of the role played by higher-order modes whose
corresponding photons ensure a larger amount of linear mo-
mentum transfer to the column interface, as illustrated in Fig.
7�a�. This can be read from Eq. �23� noting that �m increases
with m.

IV. CONCLUSION

An electromagnetic model describing stable stationary di-
electric liquid columns sustained by light radiation pressure
is presented. The liquid column is considered as step-index
liquid-core–liquid-cladding optical fiber that can either have
mono- or multimodal light propagation behavior. The radia-
tion pressure exerted by light onto the liquid-liquid interface,
which defines the liquid fiber core diameter, is calculated
using the Maxwell stress tensor and summing the contribu-
tions of all the allowed propagating modes. Steady-state op-
tical liquid fiber diameters are found when light radiation
pressure compensates the Laplace pressure, thus preventing
the column from collapsing due to surface tension effects. At
a given beam waist, equilibrium conditions are fulfilled only
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FIG. 8. �Color online� Ratio between the radiation pressure cal-
culated within the geometrical �ray optics� interpretation and the
electromagnetic �wave optics� approach vs column radius for w0

=1.8 �m �black�, 2.7 �red�, 3.5 �yellow�, and 7 �m �magenta�.
The horizontal bars refer to the experimental range of radii that
have been explored in Ref. �19�.
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above a threshold power that depends on the refractive index
contrast and interfacial tension. Above that threshold, a
single column diameter is predicted when the beam diameter
is sufficiently small, whereas a multivalued diameter is ex-
pected otherwise. The stability analysis has evidenced a se-
quence of unstable and stable equilibrium states whose map-
ping as a function of the total light power is obtained.
Although the existence of a multistable core is unambigu-
ously associated with a multimodal structure of the electro-
magnetic field, it is shown that a single-valued core diameter
can be either obtained when the light field has a mono- or
multimodal nature. Moreover, the role played by the higher-
order modes of propagation as well as the influence of the
coupling geometry was explored. Finally, a geometrical in-
terpretation is proposed. The radiation pressure calculation
using a ray optics approach is based on linear momentum
transfer of light to the liquid-liquid interface through the total
internal reflections of each allowed propagating modes.

Comparison with the electromagnetic approach showed its
range of applicability and gave qualitative insight into the
predicted multistability.

Considering our theoretical description in close relation to
previous experiments �optical stabilization whatever the as-
pect ratio and smart tuning in column diameter in the mi-
crometer range�, laser-sustained liquid bridges become very
promising optofluidic objects to anticipate new optical mi-
crosystems based on microfluidics for light guiding and cou-
pling applications or, conversely, to build and actuate fluidic
micropipes of tunable section �to transfer fluid from one res-
ervoir to another� with optical surface forces.
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