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Spin-orbit optical cross-phase-modulation

Etienne Brasselet*
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We show experimentally that optical phase singularities (PSs) can be written and erased, locally and in a
controllable manner, into a light beam using the giant Kerr optical nonlinearities of liquid crystals. The method
relies on the nonlinear optical spin-orbit coupling experienced by a collimated probe beam when a collinear
focused pump beam imprints a radial birefringent pattern into a nematic film. In addition, experimental data are
quantitatively described, accounting for the elastic anisotropy of the material and its nonlocal spatial response to
the pump light field. Since we show that the optical intensity of a light beam (the “pump”) controls the phase of
another beam (the “probe”) in a singular fashion (i.e., with the generation of a screw PS) via their interaction in
a nonlinear medium that involves spin-orbit coupling, we dubbed such a nonlinear optical process as spin-orbit
optical cross-phase-modulation.
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I. INTRODUCTION

Optical nonlinearities are present in everyday life; an ex-
ample being optical fiber communications [1]. Since quantum
information based on the orbital angular momentum of light
is expected to bring unprecedented opportunities to existing
optical information protocols [2], the nonlinear control of
the orbital degree of freedom of light fields should play
an important role in future optical information technologies.
Actually, optical nonlinearities are used to manipulate phase
singularities (PSs) [3,4] or generate a PS itself [5,6] for
over one decade, with an emphasis on screw PSs, which is
explained from their connection with orbital angular momen-
tum eigenstates of electromagnetic fields [7]. Such kinds of
PSs correspond to a phase spatial distribution of the form
exp(i�φ), where φ is the azimuthal coordinate in the plane
perpendicular to the propagation direction of the light and � is
called the topological charge. However, although it is known
that the linear coupling between the spin (i.e., polarization)
and the orbital (i.e., phase) degree of freedom of photons in
uniaxial media (be they homogeneous [8] or spatially patterned
in two [9] or three [10] dimensions) can efficiently generate
PSs from Gaussian beams, we are unaware of any reports of
its nonlinear control.

Here, we propose to combine the optical spin-orbit coupling
process with a Kerr nonlinearity in order to control in a singular
fashion (i.e., with the generation of a screw PS) the phase of
a light beam (hereafter called the “probe”) with the optical
intensity of another beam (the “pump”) via their interaction in
a nonlinear medium. This introduces a novel nonlinear strategy
toward on-demand optical generation or manipulation of screw
PSs. Since the interaction of the pump and probe beams
occurs via an optical spin-orbit coupling, we dubbed such
a nonlinear optical process “spin-orbit optical cross-phase-
modulation.” More precisely, we show experimentally that
PSs can be written and erased, locally and in a controllable
manner, into a (quasi) plane wave using the giant Kerr
nonlinearities of liquid crystals [11]. The main idea consists

*e.brasselet@cpmoh.u-bordeaux1.fr

of benefiting from the local laser-induced axial patterning of
the birefringence in nematic liquid crystal films using focused
fundamental Gaussian beams—a possibility that was unveiled
recently [12]. Our experiment relies on the local nonlinear
spin-to-orbital angular momentum conversion experienced
by a collimated probe beam, conditional on the presence a
collinear focused pump Gaussian beam that imprints a local
(i.e., its amplitude decays away from the pumped area) axially
symmetric birefringent pattern into a nematic film. This is
illustrated in Fig. 1 for three different kinds of pump-driven
optical-axis distributions in the transverse plane.

We note that the generation of a charge-two PS (� = 2)
is expected from a geometric Pancharatnam-Berry phase,
which arises from the continuous transverse changes of the
optical axis with identical initial and final state all around
the center of the modified area [13]. A simple quantitative
understanding in terms of the Jones formalism in the case of
a global (i.e. the optical axis orientation solely depends on the
azimuthal angle) radial birefringent pattern can be found in
Ref. [9]. This can also be understood from total angular mo-
mentum conservation since spin angular momentum flipping
(±h̄ → ∓h̄) is associated to the appearance of a ±2h̄ orbital
angular momentum per photon that is related to a light beam
endowed with a charge-two PS.

II. EXPERIMENT

The setup is depicted in Fig. 2. The pump light is generated
from a cw TEM00 laser source operating at wavelength
λ1 = 532 nm. Its propagation direction defines the z axis
and its polarization state is set as circular using a quarter
waveplate. The sample is a L = 100-µm-thick nematic film
(E7, from Merck) sandwiched between two 1-mm-thick glass
substrates located at z = zin and z = zin + L. The local aver-
aged molecular axis orientation of the nematic is represented
by a unit vector n, called a director, and the refractive indices
perpendicular and parallel to it are n⊥ = 1.53 and n‖ = 1.77,
respectively. In the unperturbed state n = n0, the nematic has
a homogeneous alignment along the z axis.

An overfilled microscope objective with NA = 0.5 is used
to focus the pump beam into a beam with waist and half
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FIG. 1. (Color online) Illustration of spin-orbit optical cross-
phase-modulation. Without the pump beam, the optical axis dis-
tribution of the sample lies along the z axis and the phase spatial
distribution is therefore not modified (a). In contrast, a PS is locally
generated where the axially symmetric laser-induced birefringent
patterning takes place (b). Insets: three different kinds of pump-
driven optical axis distributions in the (x,y) plane; inset 1 refers
to left-handed circularly polarized pump beam, inset 2 refers to the
case of radially polarized pump beam or to the incoherent collinear
superposition of a left- and right-handed circularly polarized pump
beam with same weight, and inset 3 refers to right-handed circularly
polarized pump beam. The data presented in this work correspond
either to case 1 or 3.

divergence at exp(−2) of its on-axis intensity w′
0 � 0.45 µm

and θ ′
0 � 21.5◦, respectively. We define the characteristic size

of the pump beam intensity cross-section as the waist in
the middle of the sample, 〈w〉. We have 〈w〉 = 〈z〉 tan θ0 where
〈z〉 is the distance between the focal spot location and the
central part of the film; see inset of Fig. 2, and θ0 � 14◦ is
the half divergence angle inside the sample accounting for the
refraction. In this study, 100 < 〈z〉 < 500 µm, which gives
60 < 〈z〉/z0 < 270 with z0 = w0/ tan θ0 (w0 = w′

0) being the
Rayleigh distance of the beam inside the sample.

The probe light is a cw TEM00 collimated beam obtained
from a He-Ne laser operating at λ2 = 632.8 nm with a
characteristic cross-section radius of the order of 1 cm and
a c± circular polarization state; here c± = (ex ± iey)/

√
2

denotes the circular polarization basis in Cartesian coordinates.
The intensity, polarization, and phase at the sample output are
analyzed owing to a Mach-Zehnder interferometer scheme; see
Fig. 2. In particular, the c∓ polarized component of the output
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FIG. 2. (Color online) A circularly polarize pump beam (λ1) is
focused on a nematic film. The sample is probed by a collimated
circularly polarized beam (λ2) in a Mach-Zehnder configuration.
QWPi : quarter waveplate where the index i refers to λi ; L:
lens; IF: interference filter for λ1; O: microscope objective; NLC:
nematic film; n0: director at rest; BS: beam splitter; PBS/UBS:
polarizing/unpolarizing beam splitter; P: polarizer; CCD: imaging
device. Inset: half divergence, θ0; characteristic waist inside the film,
〈w〉; distance from the focal spot location, 〈z〉.
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FIG. 3. (Color online) (a) Write and erase cycle for the total power
carried by the light-induced optical vortex embedded in the output
probe beam. (b) Typical doughnut intensity pattern of the nonlinearly
generated vortex beam. (c), (d) Typical interference patterns between
a reference beam with spherical wave front and the vortex beam for
right- and left-circularly polarized probe beam.

probe beam is selected by means of a quarter waveplate and
a polarizing beam splitter. As shown in Fig. 2, an additional
quarter waveplate for λ1 is inserted in order to compensate
the phase delay introduced by the pump beam quarter
waveplate.

In the unperturbed state n = n0, both the polarization
state and the spatial phase profile of the probe beam are
unaltered when passing through the sample. When the pump is
switched on, the director field is distorted and both radial and
azimuthal reorientation modes appear. This leads to an axially
symmetric local birefringent pattern n = n0 + δn where δn =
δnrer + δnφeφ + δnzez in a cylindrical coordinate system
[12]. Experimentally, we observe a nonzero c∓ polarized
probe component with total power P

(out)
∓ ; see Fig. 3(a). The

associated intensity profile has a doughnut shape whatever
the location 〈z〉 and pump beam power P0, see Fig. 3(b).
Interferometric analysis of the phase spatial structure reveals a
helical wavefront with topological charge two. As expected, its
handedness only depends on the handedness of the probe beam
polarization, as shown in Figs. 3(c) and 3(d) that correspond to
right- and left-circularly polarized probe beam, respectively.
Eventually, when the pump is switched off, the probe beam
laser-induced modifications relax toward zero; see Fig. 3(a).

III. DATA ANALYSIS

Toward a quantitative analysis of the experimental data, we
first retrieved the steady-state spatial structure of the vortex
beam by measuring the radius of its circle of maximal intensity
r = rmax [see Fig. 3(b)], where r is the radial coordinate
with the center pump beam as the origin. The experiment
is performed for different values of 〈z〉 and, for the purpose
of comparison with theory, we performed the measurements
by imposing a constant maximal light-induced phase de-
lay between the ordinary and extraordinary waves of the
probe beam, �max = max[�(r,φ)] whatever 〈z〉, where � =
2π
λ2

∫ zin+L

zin
[ne(ϑ) − n⊥]dz with ne(ϑ) = n⊥n‖/(n2

‖ cos2 ϑ +
n2

⊥ sin2 ϑ)1/2 and ϑ = arcsin[(δn2
r + δn2

φ)1/2]. Results are
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FIG. 4. (Color online) (a) Radius of the circle of maximal vortex
beam intensity rmax, (b) reduced power P̃ , and (c) total power of the
vortex beam P

(out)
∓ vs. 〈z〉 imposing �max � 1.1. Markers: experiment.

Solid curves: theory. See text for the definitions of the different
quantities.

shown in Fig. 4(a) for �max � 1.1. Obviously, the required
pump power P0 is all the more important than 〈z〉 is large
since the nonlinearity is driven by the pump intensity, which
scales as 〈z〉−2 [see Fig. 4(b)]. The same trend is observed for
the 〈z〉 dependence of the power P

(out)
∓ carried by the vortex;

see Fig. 4(c).
In Fig. 4, we have introduced the reduced power

P̃ = P0/Pc, where Pc = K3n⊥c/(n2
‖ − n2

⊥) is a characteristic
power with c the speed of light and K3 the bend elastic
constant of the nematic. This choice arises from the resolution
of the singular optical reorientation problem detailed in Ref.
[14]. In the latter reference, however, the solution has been
derived in the particular case zin = 0 and solely for steady-
state regimes under the assumption of the elastic isotropy.
In the present work, we have generalized such a model in
order to account for (i) any location 〈z〉 of the sample,
(ii) elastic anisotropy, and (iii) dynamical features of the
reorientation process, which implies the introduction of the
dissipation function density in the Euler-Lagrange equations
that now involve the rotational viscosity γ1 [15]. Such a
generalization, although cumbersome, is straightforward and,
ensuing a new set of equations for the radial and azimuthal
mode amplitudes Ar,φ and a characteristic spatial extent wr,φ

in the (x,y) plane, are therefore skipped here for the sake of
conciseness. To summarize, the spatiotemporal characteristics
of the generated optical vortex beam are retrieved from
the knowledge of �, which ultimately depends on Ar,φ

and wr,φ once the ansatz for the variational problem has
been defined [14]. In particular, the intensity profile of the
laser-induced vortex beam is obtained following I

(out)
∓ ∝

sin2(�/2) and its total power is P
(out)
∓ ∝ ∫ ∞

0 sin2(�/2)rdr .
In addition, the relaxation dynamics are found to have the
following simple form in the limit of small reorientation
amplitude, Ar,φ(t) = Ar,φ(0) exp[−K3

γ1
( 8κ1,2

w2
r,φ

+ π2

L2 )t], when the

pump beam is switched off at time t = 0 and where
κ1 = K1/K3 and κ2 = K2/K3 are the splay-to-bend and twist-
to-bend elastic anisotropy ratios.

The experimental data in Fig. 4 can be fit using Pc

as the single adjustable parameter in simulations that have
been carried out using the material parameters κ1 = 0.69 and
κ2 = 0.36. A satisfying agreement is found for Pc = 11.5 mW,
as shown in Fig. 4. We note that this best-fit value corresponds
to K3 = 20 pN and falls in the typical range for nematics

(a) (b)

FIG. 5. (Color online) Vortex beam power vs. pump power (a)
and relaxation dynamics from the steady state �max � 1.1 (b) for
〈z〉 = 170 (circles), 260 (squares), and 350 µm (triangles). Markers:
experiment. Solid curves: theory.

[15]. The dependence of P
(out)
∓ as a function of P0 has also

been investigated, as shown in Fig. 5(a) for 〈z〉 = 170, 260,
and 350 µm. A good agreement between the predictions of
the model and experimental data is found too. Finally, the
relaxation from the steady state has also been studied, as shown
in Fig. 5(b). Since �, hence P

(out)
∓ , explicitly depends on Ar,φ ,

the viscoelastic ratio K3/γ1 is found to be the natural adjustable
parameter to fit all the data (see above relaxation equations).
The best-fit predictions give K3/γ1 = 0.85 × 10−10 m2 s−1,
which agrees with measurements from other techniques [16]
and are shown in Fig. 5(b).

Moreover, we observe optical vortices with higher-order
radial modes at large power, see Fig. 6. These modes could
be viewed as the analog of higher-order Laguerre-Gaussian
modes LGp,�, where p is the radial index and � is the
azimuthal index, when p = 0 [17]. The cases p = (0,1,2) for
� = 2 are shown in Figs. 6(a), 6(b), and 6(c), respectively.
Our model also predicts such a behavior as demonstrated in
Figs. 6(a′), 6(b′), and 6(c′), respectively. The agreement is,
however, only qualitative due to the slightly broken symmetry
observed for large p.

IV. DISCUSSION

Before concluding, a few remarks might be made. First,
although liquid crystal materials are nonlocal nonlinear media,
the proposed concept works too in the case of a local
nonlinearity. Second, our results correspond to maximal
intensities of the order of kW/cm2 that are many orders of
magnitude lower than the peak intensities used in harmonics

0p 1p 2p
(a’) (b’) (c’)

(a) (b) (c)

FIG. 6. Experimental (upper row) and calculated (bottom row)
optical vortices with higher-order radial modes p for 〈z〉 = 260 µm
as the pump power increases (from left to right).
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generation experiments based on electronic nonlinearities
[3,4,6]. In fact, this is a direct consequence of the extremely
high orientational nonlinearities of nematics. Nevertheless,
such values could be further reduced by several orders of
magnitude using more sensitive detection devices or larger
optical nonlinearities, be they true (e.g., using dyes [18]) or
effective (e.g., using photonic crystals [19]). Finally, we antic-
ipate extension of the proposed strategy to other topological
charges by using generalized cylindrical vector beams with
the appropriate symmetry [20] or by using unconventional
spatially engineered polarization states prepared with uniaxial
crystals [21] for the pump beam. Finally, the present scheme
can be also used to modify the topological charge of a vortex
beam itself by using a probe beam that already carries PSs.

V. CONCLUSION

In summary, we have reported the experimental demon-
stration of rewritable, both in time and space, PSs based
on the third-order optical nonlinearities of liquid crystals.
All the observations have been quantitatively described with
good agreement. Therefore, we have experimentally unveiled
a nonlinear optical process, which we called spin-orbit optical
cross-phase-modulation, that offers a strategy toward on-
demand optical generation or manipulation of optical PSs. The
reported phenomenon may be viewed as part of a more general
class of nonlinear singular beam shaping that should also
include self-induced aspects and which will be investigated
in future work.
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