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We report on the formation and sustainment of liquid columns with aspect ratios much larger than the

value at the onset of the Rayleigh-Plateau instability. This is achieved by using the passive feedback of the

radiation pressure applied on the column surface by an acoustic beam injected at the upper end of

the column and guided along it. We develop an analytical model that describes the coupling between the

acoustic wave guiding and the balance between acoustic and capillary surface forces exerted on the

column surface and find a satisfactory agreement with the experiment.
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The control of the geometry and stability of liquid
columns is of paramount importance in many processes
implemented at scales ranging from macroscopic to nano-
metric, such as float-zone crystal growth [1], liquid jet
polishing of optics [2], wire and fiber coating [3], protein
microarray fabrication [4], or nanolithography [5]. The
long term sustainment of liquid columns with large and
controllable aspect ratios is naturally challenging on ac-
count of interfacial energy minimization [6]. Awell-known
example is the cylindrical liquid bridge with fixed ends and
volume, that breaks into droplets through the Rayleigh-
Plateau (RP) instability when its aspect ratio � ¼ L=2R
exceeds � in weightless conditions, L and R being the
length of the liquid column and the radius of its circular
cross section, respectively [6].

Since the pioneering attempts to stabilize liquid columns
using a static axial electric field by Raco [7] and Taylor [8],
several passive [9–11] and active [12–14] strategies have
been implemented in order to push further the onset of the
RP instability. Nevertheless, none of the recently devel-
oped stabilization techniques based on the application of
an external field—be it electric [9,10,13–15] or acoustic
[11,12]—succeeded in stabilizing columns made of simple
liquids of aspect ratios larger than 5.2. However, the maxi-
mum aspect ratio �max attainable using passive feedback
theoretically increases with the field intensity and is thus
a priori not limited. The questions of whether and how
liquid columns of larger aspect ratios can be sustained thus
remain open and challenging problems.

Up to now, acoustic stabilization has been achieved by
locating the liquid column at a radiation pressure node
of a standing wave whose direction is perpendicular to
the column [11,12]. Such a geometry, however, makes the
stabilization process very sensitive to the details of the
actual acoustic field surrounding the liquid column and,
more importantly, breaks its axial symmetry [11]. On the
other hand, very recently, bulk [16] and surface [17] acous-
tic waves have been shown to be able to trigger interface
destabilization leading to jetting, whereas amplitude

modulated leaky waves propagating along liquid jets have
been used to control jet breakup [18]. In this Letter, we
experimentally demonstrate that acoustic wave guiding by
the liquid column itself, which preserves its axial symme-
try, can be efficiently used to stabilize it. We indeed report
on the formation and sustainment of liquid columns made
of standard Silicone oil within a water bath with aspect
ratios much larger than its value at the onset of the RP
instability and even larger than any values formerly
reached. To achieve this, we exploit the passive feedback
of the acoustic radiation pressure applied by an ultrasonic
beam injected at the upper end of the liquid column and
guided along it. We propose an analytical model that de-
scribes the coupling between the acoustic guiding and the
balance of acoustic and capillary surface forces exerted on
the column surface and find a satisfactory agreement with
the measured column radii. Moreover, the observed robust-
ness of this stabilization technique is explained by perform-
ing a linear stability analysis of the liquid column.
Experiment.—A spherical ultrasonic transducer (focal

length 38 mm, diameter 38 mm, central frequency f ¼
!=2� ¼ 2:25 MHz, bandwidth 600 kHz) is immersed
vertically in a 40 mm thick layer of 20 cSt kinematic vis-
cosity Silicone oil (upper oil reservoir) covering a 150 mm
thick layer of pure water, both contained in an open trans-
parent tank, see Fig. 1(a). A sessile Silicone oil droplet, of
20 mm typical diameter, is placed at the bottom of the
water layer. The droplet, whose volume is controlled by a
syringe located outside the tank, plays the role of the lower
reservoir. The droplet sits on a sheet of acoustic absorber
lying on a moving pad. The transducer is supplied by a
power amplifier driven by a waveform generator that peri-
odically emits at f0 ¼ 20 kHz repetition rate sinusoidal
wave trains at carrier frequency f, of 22 periods duration
and of peak-to-peak voltage U.
In order to form a liquid column, the initially horizontal

oil-water interface is first positioned above the focus at
an altitude zinit ranging from �3:5 mm to �5 mm [here
(r, �, z) are cylindrical coordinates centered on the
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transducer symmetry axis and of origin the transducer
focus, see Fig. 1(c)]. Then U is increased and fixed beyond
the threshold of formation of an oil-in-water dripping jet by
the radiation pressure of the incident acoustic beam [16].
Then, by raising the pad, the jet tip is brought into contact
and coalesces with the sessile drop, thus forming a vertical
liquid column with small aspect ratio between both oil
reservoirs. Finally, the pad is stepwise brought down until
the column breaks up. The radius profile RðzÞ of the longest
steady column is then extracted by video postprocessing,
see Fig. 2(a). RðzÞ exhibits a wide plateau whatever U
which allows us to define the column radius R as the aver-
age of RðzÞ over the plateau defined from RðzÞ histograms.

In absence of flow, the equilibrium shape of a column is
determined by the balance of the capillary stresses due to
the interfacial tension �, the hydrostatic pressure imbal-
ance between both liquids and the acoustic radiation nor-
mal stress � usually called radiation pressure. Labeling 1
(2) the oil (water) phase, the interfacial stress balance
equation is written p1;0 � p2;0 þ ð�1 � �2Þgðz� zinitÞ þ
�½RðzÞ� ¼ ��½RðzÞ�, where � ¼ 0:033 Nm�1, �1 ¼
950 kgm�3 (�2 ¼ 1000 kgm�3) is oil (water) density,
pi;0 is the pressure at the interface in fluid i ¼ 1, 2 at

z ¼ zinit, g is Earth’s gravitational acceleration, � ¼ ð1þ
ð@zRÞ2Þ�1=2ðR�1 � @zzRÞ is the interface curvature assum-
ing the column to be axially symmetric, and �� the
Laplace pressure. Since far away from the acoustic beam
the interface is located at z ¼ zinit and is flat [see Fig. 1(a)],
p1;0 ¼ p2;0. On the other hand, the Bond number Bo ¼
gð�2 � �1ÞR2=� associated to the column is of the order of
6� 10�4 so that gravity effects can be safely neglected
[19]. Consequently � solely determines the column shape
at equilibrium,

�½RðzÞ� ¼ ��½RðzÞ�: (1)

The right-hand side of Eq. (1) can be experimentally
assessed from RðzÞ, as shown in Fig. 2(b). We observe a
plateau that demonstrates the invariance of the acoustic ra-
diation pressure along the stabilized column over distances
of the order of, or larger than, the natural diffraction length
of the acoustic beam, equal to 1.6 mm. This indicates that

the beam is guided by the liquid column. This is consistent
with the sound speed values c1 ¼ 998 m s�1 < c2 ¼
1488 m s�1 in the column and the outer bath, respectively,
ensuring the total internal reflection condition to be
satisfied.
From the latter considerations we introduce the column

length L as the length of its part exhibiting a constant
Laplace pressure. More precisely, since in both reservoirs
�� is expected to tend toward values much smaller than its
maximum, we define L as the full width at half maximum
(FWHM) of ��ðzÞ, see Fig. 2(b). The dependence of � ¼
L=2R versus U is shown in Fig. 2(c). We observe that �
does not significantly depend on U and is reproducibly
much larger than �. On the other hand, we define the
bridge length L0 as the length of its portion satisfying
RðzÞ ¼ R� �R, where �R=R ¼ 25% is the typical am-
plitude of observed bridge radius fluctuations in former
experiments on passive acoustic stabilization of liquid
bridges [11]. We find that �0 ¼ L0=2R exhibits values
comparable to �, as shown in Fig. 2(c). Importantly, we
note that the column volume is not fixed by our setup and
the volume of both oil reservoirs is much larger than the
volume of the column. So, considering the response of the
column to any shape perturbation, both oil reservoirs
should behave as constant pressure tanks. Consequently,
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FIG. 2 (color online). (a) Radius profiles RðzÞ of acoustically
stabilized liquid columns of optimal length for various values of
U [see (c) for curve identification] and for zinit ¼ �5 mm. Dots:
digitized column profiles; solid curves: 10th degree polynomial
fits. The column radius R is defined as the average of RðzÞ over
the plateau. Pairs of symbols indicate the full width at 125% of R
defining the length L0. (b) Corresponding altitude dependent
Laplace pressure �� [see (c) for curve identification]. Pairs of
symbols indicate FWHM defining the length L. (c) Solid curve:
aspect ratio � ¼ L=2R as function of U. Dotted curve: �0 ¼
L0=2R. Symbols label the curves shown in (a) and (b).

FIG. 1 (color online). (a) Sketch of the experimental setup.
UT: focused ultrasonic transducer. (b) Acoustically stabilized
liquid column of aspect ratio� ¼ 6:2 using a UT driving voltage
amplitude U ¼ 25:5 V (altitude of the initially flat interface
zinit ¼ �5 mm). (c) Geometry of the model.
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the constraint applied on the perturbation is rather a fixed
pressure than a fixed volume constraint and the predicted
aspect ratio at the instability threshold is not� but�=2 [6].
The stabilization mechanism is thus even more efficient
than estimated at first sight. Now, in order to get more
insight into the stabilization mechanism, we first model the
beam injection into the liquid column and the acoustic
wave guiding along it. Then the acoustic radiation stresses
acting on the column surface are calculated and the column
equilibrium radius as well as its stability are determined.

Model.—Assuming the acoustic propagation as nondis-
sipative, we can write the fluid velocity u as u ¼ rc ,
where c is the velocity potential, and the fluid pressure
fluctuation around its hydrostatic value p as p ¼ ��@tc .
Considering the acoustic propagation as linear and a har-
monic excitation of the transducer, the acoustic field is
assumed to be harmonic with pulsation !, and its propa-
gation is conveniently described using complex notation.
An accurate description of the incident beam near the
upper end of the liquid column, i.e., upstream from the
focus [see Fig. 2(a)] is required to model the beam injec-
tion. We thus have measured the modulus and phase of the

incident pressure field pðincÞ
! ðr; zÞ / U produced in Silicone

oil by the transducer driven sinusoidally at small U using a
40 �m diameter active element hydrophone and a lock-in
amplifier. We found that a paraxial integral model of the
field of a focused transducer [20] accurately fits these
pressure measurements (not shown here). The pressure
measurements and the paraxial integral model are inde-
pendently fitted at each z by a Gaussian beam model with

waist w0 and offset z� for r � 400 �m pðincÞ
! ðr; zÞ /

w0

w e�ðr2=w2Þ expfj½k1r22R þ k1z
� � arctanðz�z0Þ�g where z0 ¼

�w2
0f=c1 is the beam diffraction length, R ¼ �z�ð1þ

z20=z
�2Þ the wave front radius of curvature along the axis at

z� and w ¼ w0ð1þ z�2=z20Þ1=2 the beam diameter at z�.
Figure 3(a) displays the z dependence of the parameters w0

and z� of the Gaussian representation of the pressure
field. In order to achieve a full analytical description,
such a Gaussian representation will be used instead of
the paraxial integral model.

The injection of the incident beam into the liquid col-
umn through its funnel-shaped upper end [see Fig. 1(b)] is
modeled by considering a sharp end [see Fig. 1(c)] located
at altitude zinj that is the only free parameter of the model.

We assume a piecewise transmission at zinj of the incident

beam as a plane wave of potential c ðinjÞ
1;2 , i.e. c ðinjÞ

1 ðr; zinjÞ ¼
c ðincÞðr; zinjÞ for 0 � r � R and pðinjÞ

2 ðr; zinjÞ ¼
Tpp

ðincÞðr; zinjÞ, u
ðinjÞ
z;2 ðr; zinjÞ ¼ Tuu

ðincÞ
z ðr; zinjÞ for r � R,

where Tp ¼ 2Z1=ðZ1 þ Z2Þ and Tu ¼ 2Z2=ðZ1 þ Z2Þ are
the pressure and velocity transmission coefficients, respec-
tively, with Zi ¼ �ici the acoustic impedance of fluid i,
i ¼ 1; 2.

Then, we describe the guiding of the incident beam
along the liquid column as the superposition of the guided,

propagating, � invariant modes associated to an infinitely
long cylindrical waveguide of radius R. The velocity
potential of these modes labeled by integer m satisfies
the pressure and radial velocity continuity at the column

surface and writes c ðmÞðrÞ ¼ c ðmÞ
0 ejð!t��mzÞFðmÞðrÞ, where

c ðmÞ
0 is a constant, FðmÞðrÞ ¼ J0ð�mrÞ

J0ð�mRÞ if r � R and FðmÞðrÞ ¼
�1

�2

K0ð�mrÞ
K0ð�mRÞ if r � R, J0 (K0) being the zeroth order Bessel

function of the first (second) kind [21]. �m and �m are

defined as �m ¼ ½ð!=c1Þ2 � �2
m�1=2 and �m ¼

½�2
m � ð!=c2Þ2�1=2, �m being the mth smallest root

of the dispersion equation �mJ1ð�mRÞ=J0ð�mRÞ ¼
�m

�1

�2
K1ð�mRÞ=K0ð�mRÞ. Its numerical resolution shows

that it has a single root labeled bym ¼ 1 for R � 350 �m.
Therefore the observed liquid columns behave as mono-
modal acoustic waveguides. In order to determine the
amplitude of the propagating acoustic field guided along
the column labeled as g, we use the Hermitian product
defined as hc �c �i ¼

R1
0

1
2 ðp�u

�
z;� þ p�

�uz;�Þ2�rdr
that satisfies the acoustic energy flux conservation and
for which the guided propagating and leaky modes
together with the radiating modes constitute an orthogonal

basis. Its velocity potential writes c ðgÞ ¼ a1c
ð1Þ, where
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FIG. 3 (color online). (a) z dependence of effective waist w0

(black) and offset z� (red) of the Gaussian beam representation of

the measured incident pressure field pðincÞ
! ðr; zÞ (symbols) and of

the paraxial integral model (solid curves, see text). (b) Dashed
(solid) curve: R dependence of the Laplace pressure �� (radia-
tion pressure� computed forU ¼ 30 V and using for zinj its best

fit value �1:4 mm). Open (filled) circle: unstable (stable) uni-
form solution of Eq. (1). (c) Symbols: measured liquid-column
radii versus transducer voltage U. Solid (dotted) curve: predicted
stable (unstable) column radius ReqðUÞ using zinj ¼ �1:4 mm.

(d) A � ’ 11 stable liquid column, however, nonreproducibly
observed.
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a1 ¼ hc ðinjÞc ð1Þi
hc ð1Þc ð1Þi is computed using the Gaussian beam rep-

resentation of the incident beam.
Next, we assume the stress exerted on the liquid column

of radius R to be due to the propagating, guided acoustic

field of potential c ðgÞ only. According to Brillouin [22], the
time averaged acoustic radiation stress tensor Si in fluid i

is Si ¼ ð�i

2 huðgÞ2
i it � ð2�ic

2
i Þ�1hpðgÞ2

i itÞI� �ihuðgÞT
i uðgÞ

i it,
where I is the identity tensor, Tu the transpose of u and
h� � �it denotes time averaging. The resulting interfacial
stress � ¼ ðS2 � S1Þr¼R � er is purely radial. Since
wave trains are used, we assume the liquid column to
respond only to the time averaged mechanical effects of
the acoustic field. The repetition period 1=f0 is indeed
much smaller than the characteristic time scale 		

1R=� ’ 0:13 ms of the viscous dynamics of the column
(
1 is the dynamic viscosity of fluid 1). We also assume the
models of acoustic propagation and of their associated
mechanical effects established for a continuous, harmonic
excitation, to be also valid for wave trains carrying the
same time averaged acoustic energy. Therefore we simply
multiply U by the square root of the experimental duty

cycle fraction ð22f0=fÞ1=2. The resulting R dependence of
� is shown in Fig. 3(b) for U ¼ 30 V.

Finally, for a given value of U, the predicted liquid-
column radius Req is the constant solution of Eq. (1),

�ðReqÞ ¼ �=Req, satisfying the mechanical stability crite-

rium @�=@RjUðReqÞ< @ð�=RÞ=@RjUðReqÞ, as illustrated

in Fig. 3(b). Since liquid-column stabilization is predicted
to occur only above a threshold voltage Uth, in agreement
with experiments, the value �1:4 mm is chosen for zinj so

as to make bothUth and the experimental threshold voltage
coincide. We note from Fig. 2(b) that this altitude corre-
sponds with the beginning of the plateau of Laplace pres-
sure, i.e., of z invariant wave guiding, for all the observed
columns. This self-consistently validates our sharp column
end model of beam injection. Moreover, as shown in
Fig. 3(c), the predicted values of column radius are in
satisfactory agreement with the measured ones. The re-
maining discrepancy may be mainly ascribed to the con-
tribution of nonguided modes to the radiation pressure and
to the effect of acoustic streaming.

Discussion.—An insight into the robustness of the
acoustic stabilization can be grasped from the linear sta-
bility analysis of the liquid column following [11]. We
consider infinitesimal sinusoidal disturbances with wave
number K of the column radius, �R, and pressure of the
inner fluid, �p1. Then we assume an adiabatic variation of
the guided acoustic field along the perturbed column. The
linearization of the interfacial stress balance equation
around the column equilibrium state reads: �p1 ¼
CðKÞ�R with CðKÞ ¼ ��=R2

eq � @�=@RjUðReqÞ þ �K2.

Since (i) overall stability (i.e., release of any bulge through
pressure difference induced axial flow) is achieved when
CðKÞ> 0 8K, (ii) the condition of column stabilization is
Cð0Þ> 0, and (iii) CðKÞ � Cð0Þ 8K, a liquid column is

found to be stable against perturbations of any wave num-
ber. Consequently, liquid columns of any aspect ratio could
theoretically be stabilized with our technique. This ex-
plains why liquid columns of very large aspect ratios
like the one shown in Fig. 3(d) were observed, although
nonreproducibly.
To conclude, we implemented and described a new

strategy to stabilize liquid columns of large aspect ratios
based on the passive feedback of the radiation pressure
applied by an acoustic beam guided along the column. We
emphasize that the obtained stability results from the
perfect balance between the Laplace pressure and the
z-invariant acoustic stress resulting from wave guiding.
This distinguishes our approach from former passive stabi-
lization strategies [9–11]. We finally note that, although
strictly speaking guiding is not achievable in the case of a
liquid column in air, the large impedance mismatch be-
tween the column and the air may result in an almost
invariance of the acoustic field along the liquid column,
enabling to implement our technique in this case too.

*Corresponding author: r.wunenburger@cpmoh.u-
bordeaux1.fr

[1] J. Meseguer et al., Current Topics in Crystal Growth
Research 5, 27 (1999).

[2] A. B. Shorey, D. Golini, and W. Kordonski, Opt. Photonics
News 18, No. 10, 14 (2007).
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