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We report on the generation of tunable structured light fields endowed with various sets of phase

singularities from a single topological defect in a nematic liquid crystal mesophase. The experimental

demonstration relies on the use of electric field-induced nonsingular topological defects called

‘‘umbilics.’’
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In wave physics, phase singularities correspond to loca-
tion in space where the phase of a wave is undefined and
represent a generic manifestation of interferences of at
least three plane waves. In optics, this either occurs ran-
domly, as in speckle fields [1], or in a controlled manner
with the aim at designing, for instance, arrays of phase
singularities [2]. The control of optical phase singularities
actually forms the basis for applications such as optical
information processing, contactless manipulation of matter
from atomic to microscopic scale, optical three-
dimensional (3D) structuring of materials, super-resolution
microscopy or astronomical imaging [3]. Besides the
routine use of computer generated holograms to produce
optical phase singularities with arbitrary topological
charge [4], smart designs based on ordered soft-matter
systems emerged as an attractive solution thanks to the
wealth of existing self-organized structures, among which
topological defects are prime choice ones. Indeed material
topological defects can drive ‘‘regular’’ light beams (i.e.,
fields with smooth spatial profiles) into ‘‘singular’’ ones
like optical vortex beams, whose name refers to twisted
flow of light around a phase singularity [5].

Some demonstrations relying on the diffraction from
dislocations have been made in liquid crystals [6] and
colloidal crystals [7]. More recently, examples exploiting
the geometric Pancharatnam-Berry phase [8] have been
reported in the case of topological defects in nematic liquid
crystal droplets [9] and films [10]. However experiments
are restricted so far to the generation of a single optical
vortex with fixed topological charge. In addition, several
methods have been implemented to write, at the centimeter
scale, various 2D patterns for the optical axis distribution
in uniaxial mesogenic materials. Such patterns can bear
topological defects with arbitrary topological charge [11],
or even arrays of them [12]. Nevertheless, the latter strat-
egies turn out to be restricted to the design of singular
macroscopic optical elements since the control of the
topology at the microscale remains an open issue (e.g.
see Fig. 3 in [13]). Still, recent experiments have demon-
strated the possibility to induce anisotropic microstructures
endowed with topological defects using focused light
beams in achiral [14] or chiral [15] nematics. However,

when explored, their use is restricted to the generation of
charge two phase singularities [16].
Here we show the possibility to generate arrays of

optical vortices from a fixed single nematic liquid crystal
topological defect, in a controllable manner and at the
microscale (10–100 �m). In particular, we demonstrate
the control of (i) the number of vortices in a given array,
(ii) the radial and azimuthal spatial location of the vortices,
and (iii) the operation mode at the desired wavelength.
This is made possible by combining electrooptical proper-
ties of nematics to the singular optical features of 3D
orientational structures called ‘‘umbilical defects’’, in short
‘‘umbilics’’ [17]. These are nonsingular topological de-
fects that appear in nematic films with perpendicular align-
ment and negative dielectric anisotropy, which were early
reported in [18,19].
Umbilics appear above the electric field Fréedericksz

transition threshold voltage U ¼ UF and possess a topo-
logical strength s ¼ �1. They are associated to a director
field (a unit vector n defined as the local averaged molecu-
lar orientation) that changes not only along the z axis
(defined as the normal to the film) but also along the radial
(r) and azimuthal (�) polar coordinates in the (x, y)
plane [17]. The 3D structure of the director is depicted in
Figs. 1(a) and 1(b) in the case of a s ¼ þ1 umbilic of the
splay type [17], which is however without lack of general-
ity in the present work. The director can be represented in
the Cartesian coordinates system associated with the
orthonormal basis (x, y, z) in the form

n ¼ ðsin# cos’; sin# sin’; cos#Þ; (1)

where ’ is the azimuthal angle of the director in the (x, y)
plane whereas # refers to its tilt angle with the z axis.
Following [17], umbilics are described by

’ ¼ s�þ�0; (2)

#ðr; zÞ ¼ #1aðrÞ sinð�z=LÞ; (3)

where �0 is a constant, L is the film thickness, 0 � a � 1
is the reduced tilt amplitude and #1 is the asymptotic value
of # at large r, whose expression is given by
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#1 ¼ ½2ð ~U2 � 1Þ=ðK1=K3 � ~U2"�a ="
�
k Þ�1=2; (4)

where ~U ¼ U=UF is the reduced voltage, "�a ¼ "�k � "�?
is the dielectric anisotropy at frequency � with ( k , ? )
referring to directions along and perpendicular to n, andK1

and K3 are the splay and bend Frank elastic constants.
Finally, the reduced amplitude satisfies

d2a

d�2
þ 1

�

da

d�
þ

�
1� 1

�2

�
a� a3 ¼ 0; (5)

with the boundary conditions að0Þ ¼ 0 and að1Þ ¼ 1; � ¼
r=rc is the reduced radial coordinate, rc ¼ ðL=�Þ�
ðK=K3Þ1=2ð ~U2 � 1Þ�1=2 being the core radius of the de-
fect, whereK is the effective elastic constant associated to
a given umbilic [17]. Equation (5) is solved numerically,
see Fig. 1(c), and the reduced core radius rc=L vs the
reduced voltage is shown in Fig. 1(d). The 3D orientational
structure of umbilics has already been determined experi-
mentally by fluorescence confocal polarizing microscopy
in [20] and next we show how these defects can be used to
generate optical vortex arrays in a controllable manner.

In experiments, we used the nematic liquid crystal
MLC-2079 (from Licristal) with "�a ¼ �6:1, "�k ¼ 4:1

and "�? ¼ 10:2 at � ¼ 1 kHz, K1 ¼ 15:9 pN, K3 ¼
18:3 pN, and refractive indices along and perpendicular
to the nematic director are nk ¼ 1:64 and n? ¼ 1:49 at

589 nm wavelength. The sample is a 30 �m-thick film
sandwiched between two glass substrates provided
with transparent electrodes in the visible. We found
UF ’ 1:90 Vrms (� ¼ 2 kHz in experiments) that agrees

within few percents to the predicted value UF ¼
�½K3=ð"0j"ð�Þ

a jÞ�1=2, "0 being the vacuum permittivity,
which gives UF ¼ 1:83 Vrms using the data sheet informa-
tion from the manufacturer. In practice, an isolated

umbilical defect is obtained in the following manner.
First a voltage U � UF is applied, which leads to the
generation of a dense assembly of umbilics with topologi-
cal strength s ¼ �1. Then, a annihilation dynamical pro-
cess between defects with opposite strength takes place
[21]. At the end of the process it turns out that few umbilics
remains at fixed location over the�1 cm2 area of the film,
from which we select one. Its observation between parallel
linear polarizers reveals the generation of a growing num-
ber of optical vortex quadrupoles as the applied voltage is
increased. This is illustrated in Fig. 2(a) that corresponds to
an incident light with � ¼ 532 nm wavelength and linear
polarization state along the x axis. In this figure, Am refer to
the array made of m quadrupoles, Am ¼ fQ1; Q2; . . . ; Qmg,
where Qn is the nth optical vortex quadrupole starting
numbering from the central part of the defect here located
in the center of each panel. In addition, in Fig. 2, the
voltage value is set to observe a maximal and almost
uniform transmission far away from the defect, a situation
to which we further refer to as the ‘‘bright field’’ case.
In practice, this is found to occur at ~Uexp

m ¼
ð1:12; 1:25; 1:37; 1:51Þ for m ¼ ð1; 2; 3; 4Þ, respectively.
Observations are confronted with simulations in

Fig. 2(b), which is obtained in the following manner.
First we define the electric field of the incident linearly

polarized light as Ein ¼ E0e
�ið!t�k0zÞx, where ! is the

angular frequency of light and k0 ¼ 2�=� is the wave
vector in free space. Also, we introduce the total phase
delay � acquired between the extraordinary and ordinary
waves when light has passed throughout the film,

�ðrÞ ¼ 2�

�

Z L

0
½neðr; zÞ � n?�dz; (6)

where ne is the effective local refractive index of the
extraordinary wave,

neðr; zÞ ¼ nkn?
½n2kcos2#ðr; zÞ þ n2?sin

2#ðr; zÞ�1=2 : (7)

Then, apart an unimportant phase factor, the output electric
field expression is calculated, which gives
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FIG. 2 (color online). (a) Experimental intensity patterns of
the optical transmission between parallel linear polarizers (here
the passing direction is set along the x axis) when ~U is chosen to
fulfill the bright field condition for the optical vortex arrays Am,
m ¼ ð1; 2; 3; 4Þ (see text for details). (b) Corresponding intensity
patterns calculated from Eq. (9).

FIG. 1 (color online). Typical meridional [panel (a)] and equa-
torial [z ¼ L=2, panel (b)] cross sections of the director field of a
s ¼ þ1 umbilic of the splay type; rc is the core radius of the
defect and L is the nematic film thickness. The color scale refers
to the amplitude of the transverse part of n, i.e., sin#, see Eq. (1),
whereas the white segments represent the local orientation of the
director. (c) Calculated reduced amplitude a of the tilt angle #
nearby the defect located at r ¼ 0. (d) Calculated reduced core
radius rc=L vs reduced voltage ~U.
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Eoutðr; ’Þ / E0ðfcos½�ðrÞ=2� þ i cosð2’Þ sin½�ðrÞ=2�gx
þ i sinð2’Þ sin½�ðrÞ=2�yÞ: (8)

Finally, the intensity and phase profiles of the copolarized
output light field component with respect to the input
polarization state are derived from Eq. (8),

I
�k
outðr;’Þ¼ I0ðcos2½�ðrÞ=2�þcos2ð2’Þsin2½�ðrÞ=2�Þ; (9)

with I0 the maximum output intensity value and

�
�k
outðr; ’Þ ¼ arctanftan½�ðrÞ=2� cosð2’Þg; (10)

where the superscript �k refers to copolarized imaging

under linearly polarized illumination.
On the one hand, Eq. (9) allows to identify the condition

for the observation of the above-mentioned bright field
arrays Am as �1 ¼ �ðr ! 1Þ ¼ 2m�, m integer. The
corresponding voltage values ~Um are therefore numerically
found by solving�1 ¼ 2m� fromEqs. (3), (4), (6), and (7),
imposing a ¼ 1. A satisfactory qualitative agreement with
experimental data is obtained; see Fig. 2(b). Unfortunately,

the quantitative comparison between experimental and cal-
culated voltage values ~Um turns out to be a pointless at-
tempt. To understand why, let us analyze the simplest case
m ¼ 1. At first sight, the predicted value ~Umodel

1 ¼ 1:19
seems reasonably close to the experimental one, ~Uexp

1 ¼
1:12. However, the corresponding director tilt angle is quite
large, namely #model1 ¼ 0:53, thereby emphasizing that a
Fourier expansion of the director field along the z
axis truncated to the lowest mode [see the sinð�z=LÞ term
in Eq. (3)] is a yet acceptable shortcoming. In addition, we
note that the expected fourfold symmetry intensity pattern
is slightly broken at large voltage, see for instance the
pattern A4 in Fig. 2(a) that shows a anisotropic lensing
effect.
On the other hand, Eq. (10) reveals the claimed quad-

rupolar substructure of arrays Am. This is shown in Fig. 3
where panels (a),(b) and (c) refer to the phase profile
associated to A1, A2 and A3, respectively. As an example,
in the case m ¼ 1, there are four phase singularities with
alternating topological chargeþ1 (circle symbols) and�1
(star symbols) that form the quadrupole Q1; see Fig. 3(a).
Similarly, optical vortex quadrupoles Q2 and Q3 can be
identified in Fig. 3(b) and 3(c).
Experimentally, the phase structure is retrieved from the

determination of �ðrÞ, see Eq. (10). This is achieved by
measuring the intensity pattern obtained between crossed
circular polarizers. Indeed, assuming an incident circularly

polarized light Ein ¼ E0e
�ið!t�k0zÞc�, where c� ¼

ðx� iyÞ= ffiffiffi
2

p
are the circular polarization basis unit vectors,

and applying the same procedure as in the linear case above
we get

E outðr; ’Þ / E0fcos½�ðrÞ=2�c� þ ie�2i’ sin½�ðrÞ=2�c�g;
(11)

from which we obtain the intensity of the contra-polarized
output light field component,

I�?
out ðrÞ ¼ I0sin

2½�ðrÞ=2�; (12)

where the superscript�? refers to contra-polarized imaging
under circularly polarized illumination. The corresponding
experimental intensity patterns associated to the bright field
arrays A1, A2 and A3 are shown in Figs. 4(a)–4(c), respec-
tively. The satisfactory confrontation between our observa-
tions and the model is illustrated in Figs. 4(d)–4(f) where
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FIG. 4 (color online). Upper row: transmission between crossed
circular polarizers at � ¼ 532 nm associated to the bright field
arrays A1, A2, and A3. Scale bar is 20 �m. Bottom row: confron-
tation between experimental data (solid line) and the model
(dashed line) for the radial intensity profile under crossed circular
polarizers. Diamonds markers refer to the condition �ðrnÞ ¼
ð2nþ 1Þ� where rn corresponds to the radius of the circle on
which lies the four single charge optical vortices of Qn.
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FIG. 3 (color online). Calculated phase profile of the output
light field under monochromatic illumination and parallel polar-
izers imaging for bright field arrays Am with m ¼ 1 (a), 2 (b),
and 3 (c). The location of individual single charge optical vortex
is indicated by circles (topological charge þ1) and stars
(topological charge �1). The calculated region of interest cor-
responds to a 6rc � 6rc area.
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FIG. 5 (color online). Wavelength tunable bright field arrays
illustrated in the case m ¼ 2 using red (R), green (G), and blue
(B) set of illumination wavelengths �R ¼ 632:8 nm (a), �G ¼
532 nm (b), and �B ¼ 488 nm (c).
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the experimental normalized radial intensity profile (aver-
aged over the azimuth) is superimposed with the theoretical
profile given by Eq. (12).

The arrays Am can be electrically adjusted to any desired
operating wavelength. This is illustrated in Fig. 5 in the
particular case of the bright field array A2 for red (R), green
(G), and blue (B) illumination wavelengths �R ¼
632:8 nm [panel (a)], �G ¼ 532 nm [panel (b)] and �B ¼
488 nm [panel (c)], respectively. The corresponding re-
duced voltages are found to be ~UR

2 ¼ 1:33, ~UG
2 ¼ 1:25

and ~UB
2 ¼ 1:22. Accordingly, the above-mentioned aniso-

tropic lensing effect is all the more pronounced than the
wavelength is large [see Fig. 5(a), along the x axis] due to
the 1=� dependence of the optical phase delay �. Indeed,
the larger is �, the larger is the required voltage, hence the
director reorientation amplitude, in order to fulfill the
condition �1 ¼ 2m�, whatever is m.

Also, the radial and azimuthal location of the optical
vortex quadrupoles embedded in the array Am can be
controlled in the (x, y) plane while the location of the
umbilic is kept fixed. On the one hand, the electrically
tunable radial position of the four single charge optical
vortices that form the quadrupole Qn is shown in Fig. 6 for
n ¼ 1 [panel (a)], n ¼ 2 [panel (b)] and n ¼ 3 [panel (c)].
As expected from Eqs. (9) and (10), the corresponding
trajectories are straight lines at �45	 from the x axis for
a x-polarized incident light. On the other hand, the azimu-
thal control is achieved by varying the direction of the
incident linearly polarized light whatever the array Am.
This is demonstrated in Fig. 6 for m ¼ 1 [panel (d)],
m ¼ 2 [panel (e)] andm ¼ 3 [panel (f)] where the circular
trajectories of each individual optical vortex is shown for

the bright field arrays A1, A2 and A3 when the azimuth � of
the incident linear polarization state given by cos�xþ
sin�y is varied from 0 to �. In fact, such a behavior is
expected from the rotational invariance around the z axis of
the optical retardance associated to the umbilic.
To conclude, the generation of optical vortex arrays at

predetermined wavelength, with controlled number of in-
dividual optical vortex, combined with adjustable 2D po-
sitioning, has been demonstrated both experimentally and
theoretically using umbilical defects in a nematic liquid
crystal mesophase. In view of all existing kinds of topo-
logical defects in liquid crystals [22] these findings appear
useful for the production of tailored complex light fields
structures that can find applications, for instance, in optical
imaging, trapping and micromanipulation.
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FIG. 6 (color online). Upper row: electrically-controlled radial
position in the (x, y) plane of quadrupoles Q1 (.), Q2 (j), and
Q3 (¤) for a x-polarized incident illumination at � ¼ 532 nm, ~U
being varied from 1 to 1.6. Bottom row: polarization-controlled
azimuthal position of the m quadrupoles embedded in the bright
field array Am when the angle � between the direction of the pair
of parallel linear polarizers and the x axis is varied from 0 to �.
Quadrupoles labeling is the same as above.
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