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We unveil the generation of universal morphologies of fluid interfaces by radiation pressure

regardless of the nature of the wave, whether acoustic or optical. Experimental observations reveal

interface deformations endowed with steplike features that are shown to result from the interplay

between the wave propagation and the shape of the interface. The results are supported by

numerical simulations and a quantitative interpretation based on the waveguiding properties of

the field is provided.
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More than one century after the pioneering works of
Poynting [1] and Rayleigh [2] on the mechanical effects
of electromagnetic and acoustic waves, it is common
knowledge that both light and sound exert radiation pres-
sure on matter. Experimentally, a striking demonstration
of its existence is the observation of deformations of fluid
interfaces as shown in acoustics by Hertz and Mende in
1939 [3] and in optics by Ashkin and Dziedzic in 1973
[4]. Since these observations, the radiation pressure of
waves has been exploited in various contexts such as
contactless metrology of fluids ([5] in optics and [6] in
acoustics), liquid droplet ejection ([7] in optics and [8] in
acoustics), and biomedical applications ([9] in optics and
[10] in acoustics).

Here we report on a universal kind of steady state
deformation of initially flat fluid interfaces induced by
radiation pressure whatever the nature of the wave, be it
acoustic or optical. We show that this novel family
of steplike universal interface morphologies results
from the balance between buoyancy, capillarity, and
radiation pressure for both the acoustic and electromag-
netic cases. Performing numerical simulations we show
that refraction drives the interplay between the shape of a
deformed interface and the wave propagation along it.
Finally, we propose an interpretation of the observed
morphologies based on the waveguiding properties of
the deformations.

This is made possible by using interfaces between
simple fluids for acoustic waves whereas extremely
soft interfaces of near critical fluids are used in the
case of optical waves. At rest, two immiscible fluids
define a planar interface, see Fig. 1(a). The interface is
deformed by the acoustic or optical radiation pressure of
a focused sound or light beam that impinges at normal
incidence from the medium with the largest phase ve-
locity (cþ) to the one with the lowest phase velocity
(c�), thereby leading to steplike deformations as
sketched in Fig. 1(b).

Experimentally, the acoustic beam is obtained from an
immersed, spherical, piezoelectric transducer with a
38.4 mm radius of curvature, 38 mm diameter operating
at 2.25 MHz central frequency. In the optical case, we use a
focused Gaussian beam at 514.5 nm wavelength. For each
experiment, we set the incident power to a value that gives
an aspect ratio h=w0 of a few units, where h is the height of
the fluid interface deformation and w0 is the beam waist
[11]. Typical examples of the observed morphologies are
displayed in Figs. 1(c)–1(h). In addition, the relevant char-
acteristics of the fluids used in the acoustic case are sum-
marized in Table I whereas in optics we use the transparent,
isotropic, and nonmagnetic two-phase microemulsion
described in Ref. [12]. At T � Tc ¼ 4 K, where Tc is the
critical temperature above which two distinct phases coex-
ist, cþ ¼ 0:6855c and c� ¼ 0:6807c where c is the speed
of light in vacuum.

FIG. 1. (a) Planar fluid interface at rest. (b) Steplike interface
deformed by radiation pressure. (c,d) First (OM1) and second
(OM2) order optical morphologies, which correspond to input
beam power 470 mW and 1020 mW, respectively. (e–h) First
(AM1), second (AM2), third (AM3), and higher order (AMn)
acoustic morphologies, which correspond to input beam power
4.0 W, 1.0 W, 220 mW, and 20 mW, respectively.
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Hereafter, the observed fluid interface acoustic and optical
morphologies (AM and OM, respectively) are labeled
following their number n of steps, namely AMn and
OMn, respectively. Quantitatively, we demonstrate that the
steady-state morphologies obey the following equilibrium
equation between radiation and gravito-capillary pressures,

�R ¼ �GC: (1)

In Eq. (1) the radiation pressure is �R ¼ n � ½ðhTþi �
hT�iÞ � n� with n the unit vector normal to the interface
oriented from fluid ‘‘�’’ to fluid ‘‘þ’’ and hT�i refers to the
time averaged values of the radiation tensor at both sides of
the interface over a wave cycle. The gravito-capillary con-

tribution�GC ¼ j�þ � ��jgh� �
r

d
dr ½rh0ðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02ðrÞp �

[13] where �� is the density of fluid�, g is the modulus of
the gravitational acceleration, � is the interfacial tension,
and hðrÞ is the height of the axisymmetric deformed inter-
face, with h ¼ 0 at rest and h > 0 when the wave is turned
on, and h0ðrÞ ¼ dh

dr . In addition, we have introduced the

cylindrical coordinate system (r, �, z) with orthonormal
basis (er, e�, ez), z being the symmetry axis of the defor-

mation oriented toward its tip (see Fig. 1).

On the one hand�GC is calculated from the experimen-
tal interface profile hðrÞ. On the other hand, the evaluation
of�R requires the computation of the field. This is done by
solving the propagation equation for a given experimental
profile hðrÞ accounting for the continuity relations for the
field at the interface and appropriate source distribution
that defines the incident beam.
In acoustics, the linear propagation equation in perfect

fluids is expressed as��� � 1
c2�

@2��
@t2

¼ 0where�� is the

complex axisymmetric acoustic pressure field in each fluid,
p�ðr; z; tÞ, with time t. Assuming harmonic fields with
angular frequency!, the acoustic velocity field is obtained
from the Euler equation that gives u�ðr; z; tÞ ¼ 1

i!��
rp�.

Numerically, the propagation problem—Helmholtz equa-
tion in a two-phase axisymmetric configuration-is solved
by using a boundary element method [14]. Once the
pressure and velocity fields are calculated [see panels (a)
and (b) in Figs. 2–4, where the real part and modulus of p
are shown for the AM1, AM2, and AM3 situations] �R is
computed using Brillouin expression for the acoustic
radiation tensor Tac

Tac ¼ � 1

2
�p2Iþ 1

2
�u2I� �u � u; (2)

TABLE I. Fluid characteristics at room temperature for the acoustic experiments , where c�
and �� refer to the phase velocity and the density of the fluids labeled ‘‘þ’’ and ‘‘�’’,
respectively.

AM1 AM2 AM3 AMn

Fluid ‘‘þ’’ Water Water Salted water 25 wt.% Silicone oil 100cSt

Fluid ‘‘�’’ Kerosene Silicone oil 100cSt Chloroform Oil FC72

cþ (m � s�1) 1490 1490 1783 1000

c� (m � s�1) 1315 1000 1000 512

�þ (kg �m�3) 998 998 1189 966

�� (kg �m�3) 790 966 1500 1680

FIG. 2 (color online). Analysis of the AM1 and OM1 cases, see Fig. 1(e) and 1(c). In each case, the spatial distribution of the real
part and the modulus of the field in an equatorial plane are shown with the deformed interface profile superimposed on it as a white
solid curve [panels (a, b) and (e, f)]. (c, g) Balance between the radial dependence of the radiation pressure (�R) and the gravito-
capillary contribution (�GC), see Ref. [15] for details. (d, h) Deformed interface profiles. The altitude at the tip of the deformation is
set here to zero in all cases.
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where �� ¼ ð��c2�Þ�1 is the isentropic compressibility
of each fluid, I is the identity tensor, and � is the dyadic
product. The validity of Eq. (1) is tested by comparing the
radial dependence of �R and �GC for various morphol-
ogies as shown in panel (c) of Figs. 2–4 [15]. We
conclude that there is an overall satisfying validation of
Eq. (1). Noticeably, the main extrema of �R correspond
to the ones of �GC, which show the steplike nature of the
morphologies. We note that the observed on-axis discrep-
ancy between �R and �GC could be ascribed to the
hydrodynamic stress exerted at the tip of the deformation
by the rectified fluid flow that results from thermoviscous
dissipation (‘‘acoustic streaming’’) [16].

In the optical case, since the refractive index contrast is
small, cþ�c�

c & 10�2, the scalar propagation equation is

known to accurately describe the electromagnetic field
whatever its polarization state. In order to benefit from
the mathematical equivalence between acoustic and elec-
tromagnetic wave propagation [17], we restrict our study
to the particular cases of a TE-polarized field, � ¼ ETE

where ETE ¼ ETEe�, or TM-polarized field, � ¼ HTM

where HTM ¼ HTMe�, where E and H are the electric

and magnetic fields. This allows us to use the numerical
code developed for the acoustic case following the
polarization dependent correspondence summarized in

Table II. Once the electric and magnetic fields are calcu-
lated [see panels (e) and (f) in Figs. 2–4, that show the
real part and modulus of ETE for the OM1 and OM2
situations] �R is computed using the Maxwell expression
for the electromagnetic radiation tensor Tem [18]

Tem ¼ � 1

2
�E2I� 1

2
�H2Iþ �E � Eþ�H �H; (3)

where �� ¼ �0
ffiffiffiffiffiffiffiffiffiffiffi
c=c�

p
and �� ¼ �0 are the dielectric

and magnetic susceptibilities of each fluid, respectively,
�0 and �0 being the ones of vacuum. From the panels (g)
and (h) of Figs. 2 and 3, the comparison of �R and �GC

[15] allows us to draw the same conclusions as in the
acoustic case, including the possible role of a light in-
duced on-axis flow ascribed to light scattering by refrac-
tive index critical fluctuations (‘‘optical streaming’’)
[19,20]. As shown in Fig. 2(e), where �R is plotted for
both the TE and TM cases, the radiation pressure is
almost insensitive to the polarization state of the wave,
as expected.
In previous works we demonstrated that the waveguid-

ing of the field along the deformed interface constitutes the
feedback mechanism for radiation pressure effects. In par-
ticular, this can lead to the stabilization of translationally
invariant (here along the z axis) liquid columns by acoustic
[21] or electromagnetic [22] guided waves. Next, we show
that this mechanism applies to noninvariant fluid deforma-
tions as well. We note that OM2 and AM2 deformations

FIG. 4 (color online). As in Fig. 2 for the AM3 case, see
Fig. 1(g), and [15] for details.

TABLE II. Table of equivalence between acoustic and electro-
magnetic wave propagation.

Acoustic wave TE optical wave TM optical wave

p Ee� He�
u e� �H e� �E
� � �
� � �

FIG. 3 (color online). As in Fig. 2 for the AM2 and OM2 cases, see Fig. 1(f) and 1(d), and [15] for details.
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have been already observed, however not explained, in
Refs. [23,24], respectively.

For this purpose, we compare (i) the numerically com-

puted field at altitudes that correspond to the locally cy-

lindrical shape of a given deformation with radius R with

(ii) the field of the dominant guided mode existing for a

cylindrical waveguide with the same radius. As shown in

Figs. 5–7, we observe a striking coincidence that leads us

to calculate the modal content of the field propagating

along the deformation. The z dependence of the modulus

of the normalized amplitude janj of the nth guided mode

[25] is shown in Figs. 5(a), 5(d), 6(a), 6(e), and 7(a), for the

AM1, AM2, AM3, OM1 and OM2 situations. Note that the

fundamental mode n ¼ 1 of a cylindrical waveguide exists
whatever its radius whereas higher order modes n > 1
exist above cut-off radii r ¼ Rn�1, respectively. The

observed plateaus of janj versus z coincide with locally

z-invariant morphologies. This indicates that every cylin-

drical portion of the fluid deformation actually behaves as

a waveguide.

Interestingly, the steplike morphologies can be classified
using a dimensionless quantity that only depends on the
wavelength, the beam waist, and the phase velocities of
each fluid. Following standard waveguiding theory [26],

we introduce the characteristic normalized frequency Vc ¼
kþw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcþ=c�Þ2 � 1
p

, where kþ is the wave vector in fluid
‘‘þ’’. The number of existing guided modes is known to
increase with Vc, so does the order of the observed mor-
phologies. Indeed Vc ¼ 5:0, 6.0, 8.1, and 9.0 for the acous-
tic morphologies AM1, AM2, AM3, and AMn shown in
Figs. 1(e)–1(h), respectively, whereas Vc ¼ 3:6 and 6.1
for the optical morphologies OM1 and OM2 shown in
Figs. 1(c) and 1(d), respectively. However, we notice that
a given morphology guides a larger number of modes in
optics than in acoustics. This can be grasped by comparing,
on the one hand, the cases AM1 and OM1, and, on the
other hand, the cases AM2 and OM2. This could be
ascribed to different values of kw0, which is a constant of
the order of 1 in acoustics whereas it is typically 1 order of
magnitude larger in optics.

FIG. 6 (color online). As in Fig. 5 for the AM2 and OM2 cases, see Fig. 1(f) and 1(d).

FIG. 5 (color online). Analysis of the AM1 and OM1 cases, see Fig. 1(e) and 1(c). (a), (d) z dependence of the modulus of
the normalized amplitude janj of the nth guided mode. (b),(e) Deformed interface profiles. The altitude at the tip of the deformation
is set to zero in all cases. Each colored area refers to the radial range of existence of a given set of guided modes.
(c), (f) Correspondence between the numerically computed field at altitudes that correspond to the locally cylindrical portion of a
given deformation (solid curve) with the field of the dominant guided mode existing for a cylindrical waveguide with same radius

(dashed curve), with ~c ðr; z; tÞ ¼ c ðr;z;tÞ expf�i arg½c ð0;z;tÞ�g
maxrjc ðr;z;tÞj where c ¼ p in acoustics and c ¼ ETE in optics.
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To conclude, we have reported on the observation of
universal steplike morphologies of fluid interfaces deformed
by the radiation pressure of acoustic and electromagnetic
waves. This phenomenon basically relies on the waveguid-
ing properties of sound or light in axisymmetric two-phase
liquid deformations with distinct phase velocities.
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