David Martin
University of Chicago, Kadanoff Center for Theoretical Physics, USA

Emergent phenomena in active matter and beyond

Active Matter deals with the study of microscopic agents able to exert self-propulsion forces on their medium. These microscopic agents can model various entities evolving in a large range of scales in Nature; from bacterias and flying birds to man-made self-phoretic colloids. The presence of self-propulsion drives the active agents out of equilibrium and allows for the emergence of landmark phenomena, both at the level of a single agent and at the collective level in ensembles of agents. In this presentation, I will first characterize such nonequilibrium phenomena for a single active particle. I will then move to the characterization of different collective behaviors as a function of the microscopic interactions between the active agents. In particular, I will assess how topological, repulsive and nonreciprocal interactions interplay with the emergence of collective motion.