Since June 2021, I administrate the Photonic & Materials Team, composed of 4 research groups.

Scientifically, I focus on problems related to Electromagnetism in micro and nano optical systems (theory and numerics), with the purpose to :

  • Learn and Control the dynamics of classical & quantum objects trapped in levito-dynamics setups, e.g. to make new (quantum or classical) sensors. Work with the experimental  Nano-Optics Group

On-going ANR Project QLevio  :    Reaching the Quantum Ground State of an optically levitated  nanomechanical oscillator ( https://anr.fr/Project-ANR-21-CE30-0006)

  •  Design optical nano-systems based on organic materials (e.g. light sources, nanolasers, polaritonic LEDs, etc ….). Work with the experimental  PULS Group and TIPI Group

On-going ANR Project IDOL : Design and Fabrication of Organic Lasers pumped electrically https://anr.fr/Project-ANR-22-CE24-0010

Techniques de recherche

Research Techniques

Theoretical / Numerical work in Levito Dynamics

We model the experiments done in the group, solving Langevin equations of the particle(s) in trap beam, coupled to external PID regulators that cool down the particle(s). We investigate the particle dynamics using tools of Statistical Physics and Nonlinear Dynamics.

In recent works, dealing with the rotational degrees of freedom of the trapped nanoparticle, the

Nano-Optics Group  observed  a phase transition between  locked / unlocked states. In this bistability domain, a giant diffusion effect of the rotation speed has been observed and explained by a simple model based on a timescale separation.

Theoretical Work in Nano-Optics

We use an approach based on the regularization of Singular Scattering operators, and the expansion of a compact non-linear eigenvalue problem. The final goal is to obtain a precise modal expansion for the field scattered by nanoparticle(s), see [http://dx.doi.org/10.1364/OE.24.027137] .

This work takes a place between Mathematics and Physics, and paves the route for new modeling tools to obtain accurate but scalar models of complex systems, where the (heavy) computation of 6 field components in 3D space, for each frequency and excitation condition (angle, polarization) is replaced by a the computation of a few complex numbers that characterize the system: the QNM Eigen frequencies and some volume integrals of their modes.

The reduction of complexity is drastic, while preserving quantitative modeling.

Eventually, it is the field map of the mode that contains all the information on the spatial variation of fields, whereas the expansion coefficients (often a few of them are needed), contains the information on frequency (or time) variation.

Thèmes

Thèmes

Levito Dynamics https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.023602

Theory of Quasi-Normal Mode expansion, and its applications (including OLEDs http://dx.doi.org/10.1364/OE.24.027184  , Photovoltaics)

Singular integral and their application for image analysis  https://www.ams.org/journals/qam/2023-81-01/S0033-569X-2022-01629-1/

Numerical simulation in nanoplasmonics [ https://doi.org/10.1103/PhysRevLett.112.193903]

Non-linear propagation and fiber lasers, see [https://doi.org/10.1364/OE.21.010731]

Collaborations

Collaborations

International :

N. Budko, T.U. Delft

work on the essential Spectrum of Electromagnetic Scattering operator. Application to the Quasi-Normal Mode theory.

National :

F. Gruy, Ecole des Mines de Saint-Etienne.

Local:

In Bordeaux University :

IMS – ISM – LP2N – CBMN – ICMCB

Work in common with the team Photonic and Materials

I try to work with all the main themes of our team. The related publications are focused on :

Levito Dynamics https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.023602  

Experimental plasmonics https://doi.org/10.1103/PhysRevLett.112.193903

Rod-type laser (NL optics):  https://doi.org/10.1364/OE.21.010731

Organic light sources https://pubs.acs.org/doi/10.1021/acsphotonics.3c00488

Publications

List of my publications on Hal Archive

Actualités

Acurate modeling of organic light sources.

We explain how the molecule emission in different cavity resonances can permit to control the emission of an organic light source, from blue to red.

Publications Récentes

A. Bachelet, S. Fasquel, J.-M. Rampnoux, G. Jonusauskas, K. Takimiya, L. Hirsch, M. Perrin, M. Abbas, “Wide range color tuning in single emissive layer organic light emitting transistors”, ACS Photonics 2023

https://pubs.acs.org/doi/10.1021/acsphotonics.3c00488

M. Perrin, F. Gruy, “Explicit calculation of singular integrals of tensorial polyadic kernels”, Quarterly of Appl. Mathematics, 81, 65-86 (2023).

https://www.ams.org/journals/qam/2023-81-01/S0033-569X-2022-01629-1/

L. Bellando, M. Kleine, Y. Amarouchène, M. Perrin, Y. Louyer, “Giant diffusion of nanomechanical rotors in a tilted washboard potential”, Phys. Rev. Lett. 129, 023602 (2022).

http://dx.doi.org/10.1103/PhysRevLett.129.023602

M. Perrin, “Eigen-energy effects and non-orthogonality in the quasi-normal mode expansion of Maxwell équations”, Optics Express   Vol. 24, issue 24, 27137-27151  (2016).

http://dx.doi.org/10.1364/OE.24.027137

F. Dumur, S. Reculusa, M. Mruczkiewicz, M. Perrin, L. Vignau, S. Fasquel, “Multilayer Langmuir-Blodgett films as diffractive external 3D photonic crystal in blue OLEDs”,  Optics Express   Vol. 24, issue 24, 27137-27151  (2016).

http://dx.doi.org/10.1364/OE.24.027184

 

J. Yang,  M. Perrin, P. Lalanne, “Analytical Formalism for the Interaction of Two-Level Quantum Systems with Metal Nanoresonators”,Phys. Rev. X 5, 021008 (2015).

https://doi.org/10.1103/PhysRevX.5.021008

O. Lozan, M. Perrin, B. Ea-Kim, J. M. Rampnoux, S. Dilhaire, P. Lalanne ; “Anomalous Light Absorption around Subwavelength Apertures in Metal Films”, Phys. Rev. Lett. 112, 193903 (2014).

https://doi.org/10.1103/PhysRevLett.112.193903

T. Crouzil, M. Perrin ; “Dynamics of a chain of optically coupled micro droplets”; Journal of the European Optical Society : Rapid Publication 8, 13079 (2013).

http://www.jeos.org/index.php/jeos_rp/article/view/13079

P. Deslandes, M. Perrin, J. Saby, D. Sangla, F.Salin, E. Freysz, “Picosecond to femtosecond pulses from high power self mode–locked ytterbium rod-type fiber laser “,  Opt. Express 21, 10731-10738 (2013).

https://doi.org/10.1364/OE.21.010731

Q. Bai, M. Perrin, C. Sauvan, J.P. Hugonin, P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure”,  Opt. Express 21,  27371-27382 (2013).

https://doi.org/10.1364/OE.21.027371

Curriculum vitae

Curriculum vitae

09/2008…    Chargé de recherche au CPMOH,  devenu le LOMA (UMR5798).

2005-2008   Chargé de recherche au laboratoire PhLAM de Lille (UMR8523),puis à l’IRCICA (FRCNRS3024).

2004-2005   Max Planck Institut Physik Complexer Systeme, Dresden.

Post Doctorat  “Etude de bifurcations  dans une interaction  laser/matière”.

2003-2004   Institut d’Electronique,  Microelectronique  et  Nanotechnologies, Lille (UMR8520).

Post Doctorat “Etude de propagation  rétrograde dans des cristaux photoniques”.

2000-2003   Institut  Non Linéaire  de  Nice (UMR6618) et Université  des  Sciences de Florence.

Thèse en cotutelle France/Italie, Moniteur de l’Université de Nice.

Pas de photo

Mathias PERRIN

Laboratoire Ondes et Matière d’aquitaine (LOMA)
351 cours de la libération
33405 Talence Cedex

Phone : + 33 (0)5 40 00 61 76
Fax : + 33 (0)5 40 00 69 70
E-mail:mathias.perrin@u-bordeaux.fr