Member of the Condensed Matter Theory Team and Quantum Transport ans Nano Electro Mechanical Systems Group.

I am a permanent researcher (Chargé de Recherche) in french CNRS.
My main topics of investigations are the Theory of Quantum Transport and Molecular Electronics.
I am exploring the interplay between electronic and vibrational degrees of freedom down to the molecular scale.
My recent research interests are in the emergent field of cavity-induced chemistry, the aim of which is to engineer and control the kinetics of chemical reactions in plasmonic nanocavities. This research project is funded by the ANR CERCa ( Charge, Energy transfer and chemical Reactions with molecules in an electromagnetic Cavity).

Follow me on twitter : @remiavriller
email : remi.avriller at u-bordeaux.fr

Selected overview

Selected overview


NEWS !!!

The project CERCa ( Charge, Energy transfer and chemical Reactions with molecules in an electromagnetic Cavity), financed by the Agence Nationale de la Recherche (ANR) has officially started.
Openings for several master internships and one PhD fellowship will soon be opened.


The time-dependent building-up of a Kondo-peak is shaking upon vibronic excitations.
Read our latest preprint :  ArXiv pdf


The Wigner distribution of a quantum nanomechanical oscillator coupled to tunneling electrons.
Read our latest paper : ArXiv  hal pdf



Awarded Outstanding Reviewer for 2016  by IOP Journal of Physics: Condensed Matter.


The PhD thesis of our student G. Micchi is available online.
« Mechanical signatures of the current-blockade instability in suspended carbon nanotubes »hal

A nice picture of the current fluctuation spectrum for a carbon nanotube nanomechanical resonator.
Read our latest paper : ArXiv  hal pdf

A nice signature of the current-blockade instability on mechanical properties of a carbon nanotube resonator.
Read our latest paper : ArXiv pdf

How long do electrons have to wait before tunneling across a molecular junction ?
Answer in our latest paper :  ArXiv pdf

Past News :
The Workshop « Nano Electro Mechanical Systems and Beyond » is organized by our team and will take place in the University of Bordeaux, the 3-5th of June 2015.
Website of the Workshop:  Nano Electro Mechanical Systems and Beyond.


Keywords reflecting my scientific activities :

  • Mesoscopic physics.
  • Quantum Transport and Molecular junctions (see Fig.a).
  • Time-dependent Quantum Electronics.
  • Electron-phonon interactions in nano-structures.
  • Full-counting statistics of interacting systems.
  • Non-equilibrium phenomena and Keldysh Green functions techniques.
  • Ab-initio computations of inelastic shot-noise.
  • Out-of-equilibrium Superconductivity.
  • Decoherence and Dissipation in nanoscale open systems.
  • Nano ElectroMechanical Systems (NEMS) with carbon nanotubes (see Fig.b).
  • Quantum Transport in Plasmonic Cavities.
  • Chemical properties of molecular populations embedded inside an electromagnetic cavity (see Fig.c).
  • Marcus theory of charge transfer chemical reactions in confined plasmonic cavities.


Scientific Slides

Scientific Slides


Here is a selection of some talks I have given in international conferences.
Their aim is to provide a snapshot of my research activities.


1. Presentation given at the international Conference FQMT17 « Frontiers of Quantum and Mesoscopic Thermodynamics » in Prague, 2017.
« Time-Dependent Quantum Transport in Molecular Junctions: Effects of e-ph Interactions »

2. Presentation given at the international Conference FNS2017 “Frontiers of Nanomechanical Systems (FNS)” in La Thuile, 2017.
« Electro-Mechanical Transition in Quantum Dots »


1. Presentation given at the international Workshop TRMME « Towards Reality in Modelling of Molecular Electronics »  in San Sebastian, 2016.
« Dynamical Aspects of Electron-Phonon Interactions in Quantum Transport »


1. Presentation given at the international Workshop ctcqed15 « Charge Transfer meets Circuit Quantum Electrodynamics » in Dresden, 2015.
« Andreev Bound-State Dynamics in a Quantum dot Josephson Junction: a Washing-out of the 0-|pi Transition »



My Publications from HAL Archive


1. R. Avriller, B. Murr and F. Pistolesi,
Bistability and Displacement Fluctuations in a Quantum Nano-mechanical Oscillator,
Phys. Rev. B. 97, 155414 (2018) : ArXiv hal pdf

2. R. Seoane Souto, R. Avriller, A. Levy Yeyati and A. Martin-Rodero,
Transient Dynamics in Interacting Nanojunctions within Self-consistent Perturbation Theory,
Accepted for publication in New Journal of Physics (2018) :   ArXiv pdf


1. G. Micchi, R. Avriller and F. Pistolesi,
Electro-Mechanical Transition in Quantum dots,
Phys. Rev. B. 94, 125417 (2016). ArXiv hal pdf


1. R. Seoane Souto, R. Avriller, R. C. Monreal, A. Martin-Rodero and A. Levy Yeyati,
Transient dynamics and waiting time distribution of molecular junctions in the polaronic regime,
Phys. Rev. B. 92, 125435 (2015). ArXiv pdf

2. G. Micchi, R. Avriller and F. Pistolesi,
Mechanical Signatures of the Current Blockade Instability in Suspended Carbon Nanotubes,
Phys. Rev. Lett. 115, 206802 (2015). ArXiv pdf 


1. R. Avriller and F. Pistolesi,
Andreev Bound-State Dynamics in Quantum-Dot Josephson Junctions: A Washing Out of the 0π Transition,
Phys. Rev. Lett. 114, 037003 (2015).  ArXiv pdf
Selected by the Physics institute of French CNRS as an « Actualité 2014 » :  Actualité2014 pdf


1. M. Kumar, R. Avriller, A. Levy Yeyati and J. M. van Ruitenbeek,
Detection of vibration-mode scattering in electronic shot noise,
Phys. Rev. Lett. 108, 146602 (2012). pdf
Selected by the editor for a Synopsis in physics. A Noisy Junction

2. R. Avriller and T. Frederiksen,
Inelastic shot noise characteristics of nanoscale junctions from first principles,
Phys. Rev. B 86, 155411 (2012). ArXiv pdf


1. R. Avriller, F. S. Bergeret, and F. Pistolesi,
Detection of ultrafast oscillations in superconducting point contacts by means
of supercurrent measurements

Phys. Rev. B 84, 195415 (2011). ArXiv pdf

2. R. Avriller,
Unified description of charge transfer mechanisms and vibronic dynamics in nanoscale junctions,
J. Phys. : Condens. Matter 23 105301 (2011). ArXiv pdf


1. D. F. Urban, R. Avriller, and A. Levy Yeyati,
Nonlinear effects of phonon fluctuations on transport through nanoscale junctions,
Phys. Rev. B 82, 121414 (2010). ArXiv pdf

2. B. Biel, A. Cresti, R. Avriller, S. Dubois, A. López-Bezanilla, F. Triozon, X. Blase, J.-C. Charlier and S. Roche,
Mobility gaps in disordered graphene-based materials :an ab initio-based tight-binding approach to mesoscopic transport,
Physica Status Solidi (c) 7, 2628 (2010). pdf


1. R. Avriller and A. Levy Yeyati,
Electron-phonon interaction and full counting statistics in molecular junctions,
Phys. Rev. B 80, 041309(R) (2009). ArXiv pdf

2. S. Nanot, R. Avriller, W. Escoffier, J.-Marc Broto, S. Roche, and B. Raquet,
Propagative Landau States and Fermi Level Pinning in Carbon Nanotubes,
Phys. Rev. Lett. 103, 256801 (2009). pdf

3. C. Adessi, R. Avriller, X. Blase, A. Bournel, H. Cazin d’Honincthun, P. Dollfus, S. Frégonèse, S. Galdin-Retailleau, A. López-Bezanilla, C. Maneux, H. Nha Nguyen, D. Querlioz, S. Roche, F. Triozon and T. Zimmer,
Multiscale simulation of carbon nanotube devices,
C. R. Physique 10, 305 (2009). pdf


1. L. E. F. Foa Torres, R. Avriller, and S. Roche,
Nonequilibrium energy gaps in carbon nanotubes : Role of phonon symmetries,
Phys. Rev. B 78, 035412 (2008). pdf

2. B. Raquet, R. Avriller, B. Lassagne, S. Nanot, W. Escoffier, J.-Marc Broto, and S. Roche,
Onset of Landau-Level Formation in Carbon-Nanotube-Based Electronic Fabry-Perot Resonators,
Phys. Rev. Lett. 101, 046803 (2008). pdf

3. R. Avriller,
PhD Thesis (2008), Université Joseph Fourier,
« Contribution à la modélisation théorique et à l’étude du transport quantique
dans les dispositifs à base de nanotubes de carbone. »


1. B. Lassagne, J-P. Cleuziou, S. Nanot, W. Escoffier, R. Avriller, S. Roche, L. Forró, B. Raquet, and J.-M Broto,
Aharanov-Bohm Conductance Modulation in Ballistic Carbon Nanotubes,
Phys. Rev. Lett. 98, 176802 (2007). pdf
2. R. Avriller, S. Roche, F. Triozon, X. Blase and S. Latil,
Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes :
from weak to strong localization regimes

Mod. Phys. Lett. B 21, 1955 (2007). pdf

3. P. Actis, R. Avriller, C. Couzon, P. Delorme, C. Dupré, E. Engel, V. Garlatti, O. Le Roux, L. Nussbaum and Schlosser,
Atelier 7 : Classes Passerelles,
Annales des ateliers du CIES de l’Académie de Grenoble, Vol 1 (2007). pdf


1. R. Avriller, S. Latil, F. Triozon, X. Blase and S. Roche,
Chemical disorder strength in carbon nanotubes : Magnetic tuning of quantum transport regimes
Phys. Rev. B 74, 121406(R) (2006). pdf

Curriculum vitae

Curriculum vitae


2018-2022 :

PI of the project CERCa ( Charge, Energy transfer and chemical Reactions with molecules in an electromagnetic Cavity), financed by the Agence Nationale de la Recherche (ANR).

Since 2014 :

Active member of the Transborder Joint Laboratory (LTC-Laboratoire Transfrontelier Conjoint) Theoretical Chemistry and Physics at the Quantum Scale: QuantumChemPhys.

Since 2012 :

Responsible for Scientific Communication in LOMA

Teaching duties :

Teaching nanomechanics and optomechanics in Master M2 Lasers, Matière et Nanoscience, University of Bordeaux. 

Since 2012 :

Expert at Observatoire des Micro et Nano Technologies (OMNT) section NEMS.

Since 2011 :

Chargé de recherches au CNRS (permanent researcher),
Laboratoire Onde et Matière d’Aquitaine (LOMA), French CNRS (Bordeaux),
Team « Transport Quantique et Systèmes Nano-électromécaniques ». website

2010-2011 :

Post-doc researcher in the team of Thomas Frederiksen,
Donostia International Physics Center (DIPC). website

2008-2010 :

Post-doc researcher in the team of Alfredo Levy Yeyati,
Universidad Autónoma de Madrid (UAM),
Departamento de Física Teórica de la Materia Condensada.website

2005-2008 :

PhD Thesis under the direction of Stephan Roche,
Theory group of the CEA Grenoble, Institut Nanosciences et Cryogénie (INAC).website
Title : « Contribution à la modélisation théorique et à l’étude du transport quantique dans les dispositifs à base de nanotubes de carbone. »

Since 2004 :

Professeur Agrégé de physique.

2001-2005 :

Ecole Normale Supérieure de Cachan (France),
Magistère de Physique, Université Paris XI, Orsay (France).
M1 : Parcours physique fondamentale.
M2 : « Physique quantique » at Ecole Normale Supérieure de Paris (France).



NEW !!!

There is currently one position opening in the group :

  1. One M2 Internship opening (2018-2019) : Charge, Energy transfer and chemical Reaction with molecules in an electromagnetic Cavity
  2. One PhD fellowship will be soon opened on this topic (2019), that will be financed by the Agence Nationale de la Recherche, project CERCa.

Students who are willing to work with me are welcome to send me an email : remi.avriller at u-bordeaux.fr

Pedagogic Ressources


Pedagogic Ressources

A « Python-Newton » Tutorial :

Here are some slides of a Python tutorial that I presented during the LOMA days in Oleron (2017).

The aim of this tutorial is to provide a naive introduction to Python programming langage.
The tutorial is applied to a well known physical problem.

The slides of the tutorial and the corresponding Python scripts are available upon request.

The scripts are for pedagogic purposes only and come with no warranty of being exempt of errors.

List of current & former students

List of current & former students

PhD Students :

Quentin Schaeverbeke. Co-direction of his PhD thesis (2016-2019) with F. Pistolesi (LOMA) and T. Frederiksen.
PhD titleDynamical aspects of quantum transport in nanoelectronics.

Gianluca Micchi. Co-direction of his PhD thesis (2013-2016) with F. Pistolesi (LOMA).
PhD title : Mechanical signatures of the current-blockade instability in suspended carbon nanotubes

Rubén Seoane Souto. Visiting PhD student in LOMA (2014) with A. Levy Yeyati (LOMA).
Project title : « Etude des propriétés de transport dépendent du temps de jonctions moléculaires dans le régime polaronique”.

Master Students :

Adrien Solacroup. Direction of his M1 internship (2018).
Internship title : « Réactions chimiques au sein d’une population de molécules confinées en cavité électromagnétique”.

Bechara Murr. Direction of his M2 internship (2017) with F. Pistolesi (LOMA).
Internship title : « Blocage de courant dans un oscillateur mécanique quantique”.

Antoine Bernard. Co-direction of his M1 internship (2016) with F. Pistolesi (LOMA).
Internship title : « Oscillateur nano-mécanique quantique sous l’effet d’un fort couplage électronique”.

Antton Goïcoechea. Co-direction of his M1 internship (2014) with F. Pistolesi (LOMA).
Internship title : « Méthode des sauts quantiques pour la description d’un oscillateur couplé à un système à deux niveaux”.

Jonathan Atteia. Co-direction of his M1 internship (2013) with F. Pistolesi (LOMA).
Internship title : « Décohérence dans un système mécanique à l’interface quantique-classique”.

Others :

Titouan Collongue Bourgeois. Stage de 3ième de découverte de la recherche (2018).

Research Project ANR CERCa

Charge, Energy transfer and chemical Reaction with molecules in an electromagnetic Cavity (CERCa)



Partners involved in the project.

R. Avriller, CNRS, LOMA. PI of the project.
F. Pistolesi, CNRS, LOMA. Collaborator C1.
T. Frederiksen, DIPC, San Sebastian. Collaborator C2.
G. Jonusauskas, CNRS, LOMA. Collaborator C3.

Scientific context. Recent progresses in nanotechnology led to a new generation of nano-structures playing the role of electromagnetic cavities, like plasmonic structures [1] (see Fig.1),  organic micro-cavities [2] and nano-fluidic Fabry-Pérot cavities [3]. Of particular interest, is the possibility to confine inside such a nano-cavity a solution of complex organic molecules and to further study their optical and chemical properties.

Similarly to the case of atoms in cavity quantum electrodynamics [4], the interaction between the confined molecules and one electromagnetic mode of the cavity arises through a dipolar type light-matter coupling. Recent experiments were performed on sub-micrometer cavities [5], that exhibit a cavity photon-mode of frequency located in the optical range, that is resonant with a molecular transition. The conjunction of a large dipole moment of the embedded organic molecules, weak effective cavity volume, and favorable scaling of the coupling strength with the molecules’ concentration, results in a sufficiently large molecule-light coupling to induce the formation of a hybrid molecule-cavity polariton.


Toward an engineering of chemical reactions in nano-cavities. The possibility to hybridize the electronic structure of complex organic molecules with a resonant cavity-photon mode, even in the case where no photon in average is present inside the cavity, has important consequences on the physical and chemical properties of the confined molecules. In particular, the formation of hybrid polaritons in the cavity has remarkable effects on the kinetics of chemical reactions and was shown to be responsible for a significant slowing-down of photochromic chemical reaction rates, compared to the case of absence of cavity [2] (see Fig.2).

References: [1] R. Chikkaraddy et al., Nature 535, 127 (2016). [2] J. A. Hutchison et al., Angew. Chem. Int. Ed. 51, 1592 (2012). [3] H. Bahsoun, et al., ACS Photonics 5, 225 (2018). [4] S. Haroche and D. Kleppner, Phys. Today, 42, 1 (1989). [5] T. Schwartz et al., Phys. Rev. Lett. 106, 196405 (2011).


Objectives of the ANR Project CERCa. The emergent field of cavity-induced chemistry opens the way to engineer and control the kinetics of chemical reactions of molecular systems confined inside a cavity-QED setup.

In this ANR project, we propose to investigate original and innovative nano-probes and open chemical nano-reactors in order to initiate, probe and modulate the rate of chemical reactions at the nanoscale.

We will propose from the point of view of theory, alternative ways of building open chemical reactors using state-of-the-art nanotechnology spectroscopic tools. Two relevant cases for chemistry will be investigated: (i) passing an electronic current across the tip of an STM plasmonic hot-spot involving single to few molecules, (ii) using a stationary flow of reactants in solution, entering and leaving an open-chemical reactor made of a nano-fluidic optical cavity (see Fig.3).

We will identify crucial physical ingredients related to the strong-coupling between electronic or vibrational degrees of freedom of the embedded molecules and a cavity photon mode, and incorporate them into the theoretical description of chemical reactions.


Photo Rémi Avriller


Laboratoire Ondes et Matière d’Aquitaine (LOMA)
351 cours de la libération
33405 Talence Cedex

Phone : + 33 (0)5 40 00 89 56
Fax : + 33 (0)5 40 00 69 70