David DEAN est membre de l’équipe Théorie de la Matière Condensée., thématique Physique Statistique.

David Dean is Professor in Statistical Physics at the University of Bordeaux. He studied for his undergraduate and PhD degrees at the University of Cambridge. He was a junior member of the Institute Universitaire de France from 2007-2012 and was the President of the Scientific Programme Committee of the Institute Henri Poincaré (Paris) from 2011-15.

Image1
David DEAN - LOMA
David DEAN - LOMA
Techniques de recherche

Techniques de recherche

Mathematical and Theoretical Physics: stochastic methods and statistical field theory.

Thèmes

Thèmes

–  Transport dans les milieux aléatoires

–  Dynamique hors d’équilibre des systèmes complexes et désordonnés.

–  Mécanique statistique des verres de spins et des systèmes désordonnés.

–  Effets électrostatiques dans les systèmes colloïdaux et membranes, électroperméabilisation.

–  Approche thermodynamique aux milieux granulaires.

–  Applications de la physique statistique à la biologie et l’informatique.

–  Atomes froids.

–  Effet Casimir.

Collaborations

Collaborations

  • Professor P. Ledoussal, ENS, Paris, France
  • Professor R.R. Horgan, University of Cambridge UK
  • Professor R. Podgornik, Universty of Ljubljana, Slovenia
  • Professor V.A. Parsegian, University of Massachussetts Amherst USA
  • Professor G. Oshanin, Université Pierre et Marie Curie, Paris, France
  • Professor S.N Majumdar, Université Paris Sud, France
  • Professor G. Schehr, Université Paris Sud, France
  • Dr V. Démery, ESPCI, Paris
  • Professor M.-P. Rols, Université de Toulouse
  • Professor M. Kruger, MPII, Stuttgart
  • Dr B.-S. Lu, Nanyang University, Singapore
Lecture Notes
Publications

Publications

Articles dans revue internationale à comité de lecture:

Liste de mes publications déposées dans Hal Archive

[1] D.S. Dean and K.M. Jansons, A note on the integral of a Brownian bridge, Proc. Roy. Soc. Lond. A 437 ,729 (1992).

[2] D.S. Dean and K.M. Jansons, Brownian excursions on combs, J. Stat. Phys. 70, 1313 (1993).

[3] T. Chan. D.S. Dean, K.M. Jansons and L.C.G. Rogers, On polymer conformations in elongational flows, Comm. Math. Phys. 160, 239 (1994).

[4] D.S. Dean, I.T. Drummond and R.R. Horgan, Perturbation schemes for flow in random media, J. Phys. A 27, 5153 (1994).

[5] D.S. Dean, On the metastable states of the zero temperature SK model, J. Phys. A 27, L899 (1994).

[6] J.P. Bouchaud and D.S. Dean, Aging on Parisi’s tree, J. Phys. I France 5, 265 (1995).

[7] E. Vincent, J.P. Bouchaud, D.S.Dean and J. Hammann, Aging in spin glasses as a random walk: Effect of a magnetic field, Phys. Rev. B. 52 ,1050, (1995).

[8] D.S. Dean and K.M. Jansons, Excursions for polymers in elongational flows, J. Stat. Phys. 79, 265 (1995).

[9] D.S. Dean, I.T. Drummond and R.R. Horgan, Perturbation theory for effective diffusivity in random gradient flows, J. Phys. A 28, 1235 (1995).

[10] L.F. Cugliandolo and D.S. Dean, Full dynamical solution for a spherical spin-glass model, J. Phys. A 28, 4213 (1995).

[11] D.S. Dean, I.T. Drummond and R.R. Horgan, Effective diffusivity in nonisotropic gradient flows, J. Phys. A 28, 6013 (1995).

[12] L.F. Cugliandolo and D.S. Dean, On the dynamics of a spherical spin-glass in a magnetic field, J. Phys. A 28, L453 (1995).

[13] D.S. Dean, I.T. Drummond and R.R. Horgan, Renormalization of drift and diffusivity in random gradient flows, J. Phys. A 29, 7867 (1996).

[14] D.S. Dean and D. Lancaster, A field theory for finite dimensional site disordered spin systems, Phys. Rev. Lett. 77, 3037 (1996).

[15] D.S. Dean and D. Lancaster, Site disordered spin systems in the Gaussian variational approximation, J. Phys. A 30, 37 (1997).

[16] D.S. Dean, Langevin equation for the density of a system of interacting Langevin processes, J. Phys. A 29, L61 (1996).

[17] D.S. Dean and D. Sentenac, Surface charging mechanism for electrolytic soap films, Europhys. Lett. 38, 645 (1997).

[18] D.S. Dean, I.T. Drummond and R.R. Horgan, Continuum derrida approach to drift and diffusivity in random media, J. Phys. A 30, 385 (1997).

[19] D.S. Dean, R.R. Horgan and D. Sentenac, Boundary effects in the one dimensional Coulomb gas, J. Stat. Phys. 90, 899 (1998).

[20] D. Sentenac and D.S. Dean, Surface charging mechanism and disjoining pressure of electrolytic soap films, J. Colloid Interface Sci. 196, 35 (1997).

[21] L. F. Cugliandolo, D.S. Dean and J. Kurchan, Fluctuation-Dissipation theorems and entropy production in relaxational systems, Phys. Rev. Lett. 79, 2168 (1997).

[22] D.S. Dean and G. Parisi, Statistical mechanics of a two-dimensional gas with long range interactions, J. Phys. A. 31, 3949 (1998).

[23] D.S. Dean, I.T. Drummond, R.R. Horgan and C.A. Da-Silvo-Santos, Inertial effects in the short range toy model, Europhys. Lett. 42, 241 (1998).

[24] A. Comtet and D.S. Dean, Exact results on Sinai’s diffusion, J. Phys. A 31, 8595 (1998).

[25] D.S. Dean, Metastable states of spin glasses on random thin graphs, Eur. Phys. J. B 15, 493 (2000).

[26] S.N. Majumdar, D.S. Dean and P. Grassberger, Coarsening in presence of kinetic disorders: Analogy to granular compaction, Phys. Rev. Lett. 86, 2301 (2001).

[27] D.S. Dean, I.T. Drummond and R.R. Horgan, Effect of helicity on the effective diffusivity for incompressible random flows, Phys. Rev. E 63, 061205 (2001).

[28] A. Lefèvre and D.S. Dean, Metastable states of a ferromagnet on random thin graphs, Eur. Phys. J. B 21, 121 (2001).

[29] D.S. Dean and A. Lefèvre, Tapping spin glasses and ferromagnets on random graphs, Phys. Rev. Lett. 86, 5639 (2001).

[30] A. Lefèvre and D.S. Dean, Tapping thermodynamics of the one dimensional Ising model, J. Phys A 34, L213 (2001).

[31] D.S. Dean and S. N. Majumdar, Extreme value Statistics of hierarchically correlated variables: violation of Gumbel statistics and anomalous persistence, Phys. Rev. E 64, 046121 (2001).

[32] D.S. Dean and A. Lefèvre, Steady state behavior of mechanically perturbed spin glasses and ferromagnets, Phys. Rev E 64, 046110 (2001).

[33] D.S. Dean and S. N. Majumdar, The exact distribution of the oscillation period in the underdamped one dimensional Sinai model, J. Phys. A 34, L697 (2001).

[34] D.S. Dean and A. Lefèvre, The steady state of the tapped Ising model, Advances in Complex Systems 4, 333 (2001).

[35] D.S. Dean, Approximation scheme for the density of states of the Laplacian on random graphs, J. Phys. A 35, L153 (2002).

[36] F.Mila and D.S. Dean, Dynamic spin-glass behavior in a disorder-free, two-component model of quantum frustrated magnets, Eur. Phys. J. B 26, 301 (2002).

[37] D.S. Dean and F. Ritort, The squared interaction matrix Sherrington-Kirkpatrick Model, Phys. Rev. B 65, 224209 (2002).

[38] A. Lefèvre and D.S. Dean, Phase transitions in the steady state behavior of mechanically perturbed spin glasses and ferromagnets, Phys. Rev. B 65, 220403, (2002).

[39] D.S. Dean and R.R. Horgan, Electrostatic fluctuations in soap films, Phys. Rev. E 65, 061603, (2002).

[40] S.N. Majumdar and D.S. Dean, Exact solution of a drop-push model for percolation, Phys. Rev. Lett. 89, 115701 (2002).

[41] D.S. Dean and S.N. Majumdar, Phase transition in a random fragmentation problem with applications to computer science, J. Phys. A 35, L501 (2002).

[42] S.N. Majumdar and D.S. Dean, Exact occupation time distribution in a non-Markovian sequence and its relation to spin glass models, Phys. Rev. E 66, 041102 (2002).

[43] S.N. Majumdar and D.S. Dean, Slow relaxation in a constrained Ising spin chain: a toy model for granular compaction, Phys. Rev. E 66, 056114 (2002).

[44] F.Daumas, N. Destainville, C. Millot, A. Lopez, D. Dean and L. Salomé, Confined diffusion without fences of a G protein coupled receptor as revealed by single particle tracking, Biophys. J. 84, 356 (2003).

[45] R.Cherrier, D.S. Dean and A. Lefèvre, The statics of generalized random orthogonal model spin glasses, Phys. Rev. E 67, 046112 (2003).

[46] R. Cherrier, D.S. Dean and A. Lefèvre, The number of metastable states in generalized random orthogonal model, J. Phys. A 36, 3935 (2003).

[47] D.S. Dean and A. Lefèvre, A possible test of the thermodynamic approach to granular media, Phys. Rev. Lett. 90, 198301 (2003).

[48] D.S. Dean and R.R. Horgan, Weak non-linear surface charging effects in electrolytic films, Phys. Rev. E 68, 051104 (2003).

[49] D.S. Dean and R.R. Horgan, The field theoretic derivation of the contact value theorem and its modification by the Casimir effect, Phys. Rev. E 68, 061106 (2003).

[50] D.S. Dean I.T. Drummond and R.R. Horgan, Effective diffusion constant in a two dimensional medium of charged point scatterers, J. Phys. A. 37, 2039 (2004).

[51] D.S. Dean and R.R. Horgan, Field theoretic calculation of the surface tension for a model electrolyte system, Phys. Rev. E 69, 061603 (2004).

[52] D.S. Dean and A. Lefèvre, Self diffusion in a system of interacting Langevin particles, Phys. Rev. E 69, 061111 (2004).

[53] D.S. Dean and R.R. Horgan, Resummed two loop calculation of the disjoining pressure of a symmetric electrolyte soap film, Phys. Rev. E 70, 011101 (2004).

[54] D.S. Dean, I.T. Drummond, R.R. Horgan and A. Lefèvre, Perturbation theory for the effective diffusion constant in a medium of random scatterers, J. Phys A. 37, 10459 (2004).

[55] D.S.Dean and R.R. Horgan, The thermal Casimir effect in lipid bilayer tubules, Phys. Rev. E 71, 041907 (2005).

[56] D.S. Dean, D.J. Lancaster and S.N. Majumdar, The statistical mechanics of traveling salesman type problems, J. Stat. Mech. L01001 (2005).

[57] D.S Dean, I.T.Drummond R.R.Horgan and S.N. Majumdar, Equilibrium statistics of a slave estimator in Langevin processes, Phys. Rev. E 70, 011101, (2005).

[58] D.S. Dean, D.J. Lancaster and S.N. Majumdar, The statistical mechanics of traveling salesman type problems, J. Stat. Mech. L01001 (2005).

[59] D.S. Dean and R.R. Horgan, The field theory of symmetrical layered electrolytic systems and the thermal Casimir effect, J. Phys. C 17, 3473 (2005).

[60] D.S. Dean, D. Lancaster and S.N. Majumdar, The statistical mechanics of combinatorial optimization problems with site disorder, Phys. Rev. E 72, 026125 (2005).

[61] D.S. Dean and R.R. Horgan, Renormalization of membrane rigidity by long-range interactions, Phys. Rev.E 73 , 011906 (2006)

[62] D.S. Dean, C. Sire and J. Sopik, Distance traveled by random walkers before absorption in a random medium, Phys. Rev. E 73, 066130 (2006).

[63] C. Sire, S. N. Majumdar and D. S. Dean, Exact solution of a model of time-dependent evolutionary dynamics in a rugged fitness landscape, J. Stat. Mech., L07001 (2006).

[64] D.S. Dean and M. Manghi, Fluctuation induced interactions bewteen lipid domains in membranes, Phys. Rev. E 74, 021916 (2006).

[65] D.S. Dean and D. Lancaster, The statistical mechanics of multi-index matching problems with site disorder, Phys. Rev. E 74, 041122 (2006).

[66] D.S. Dean and S.N. Majumdar, Phase Transition in the Aldous-Shields Model of Growing Trees, J. Stat. Phys. 124, 1351 (2006).

[67] D.S. Dean and S.N.Majumdar, Large Deviations of Extreme Eigenvalues of Random Matrices, Phys. Rev. Lett. 97, 160201 (2006).

[68] C. Touya and D.S. Dean, Dynamical transition for a particle in a squared Gaussian potential, J. Phys. A 40, 919, (2007).

[69] C. Favard, D.S. Dean and M.-P. Rols, Electrotransfer as a non viral method of gene delivery, Curr. Gene Ther. 7, 67 (2007).

[70] A.J. Bray and D.S. Dean, The statistics of critical points of Gaussian fields on large dimensional spaces, Phys. Rev. Lett. 98, 150201 (2007).

[71] L.F.Cugliandolo, D.S.Dean and H.Yoshino, Non-linear susceptibilities of spherical models, J. Phys. A 40, 4285 (2007).

[72] D.S.Dean, I.T. Drummond and R.R. Horgan, Effective transport properties for diffusion in random media, J. Stat. Mech. 7, P07013 (2007).

[73] J.-M. Escoffre, D.S. Dean, M. Hubert M.-P. Rols and C. Favard, Membrane perturbation by an external electric field: a mechanism to permit molecular uptake, Eur. Biophys. J. 36, 973 (2007).

[74] D.S. Dean and R.R. Horgan, Path integrals for stiff polymers applied to Helfrich Hamiltonians, Phys. Rev. E. 76, 041102 (2007).

[75] D.S. Dean and D. Lancaster, Fluctuations in the site disordered traveling salesman problem, J. Phys. A 40, 13837 (2007).

[76] D.S. Dean and S.N. Majumdar, Extreme value statistics of eigenvalues of Gaussian random matrices, Phys. Rev. E 77, 041108 (2008).

[77] D.S. Dean and C. Touya, Self similar renormalization group applied to diffusion in non-Gaussian potentials, J. Phys. A 41, 335002 (2008).

[78] T. Portet, F. Camps Febrer, J.-M Escoffre, C. Favard, M.-P. Rols and D.S. Dean, Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation, Biophys. J. 96, 4109 (2009).

[79] J.-M. Escoffre, T. Portet, L. Wasungu, J. Teissié, D. Dean and M.-P. Rols, What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues, Mol. Biotechnol. 41, 286 (2009).

[80] D.S. Dean, Thermal Casimir effect with soft boundary conditions, Phys. Rev. E 79, 011108 (2009).

[81] D.S. Dean, R.R. Horgan, A. Naji and R. Podgornik, One-dimensional counterion gas between charged surfaces: Exact results compared with weak- and strong-coupling analysis, J. Chem. Phys. 130, 094504 (2009).

[82] D.S. Dean, R.R. Horgan, A. Naji and R. Podgornik, The thermal Casimir effect between random layered dielectrics, Phys. Rev. A 79, 040101 (2009).

[83] D.S. Dean and A. Gopinathan, The non-equilibrium behavior of pseudo-Casimir forces, J. Stat. Mech. L08001 (2009).

[84] C. Touya, D.S. Dean and C. Sire, Dipole diffusion in a random electric field, J. Phys. A 42, 375001 (2009).

[85] A.Naji, D.S. Dean, J. Sarabadani, R.R. Horgan and R. Podgornik, Thermal Casimir–van der Waals interaction between randomly charged dielectrics, Phys. Rev. Lett. 104, 060601 (2010).

[86] V. Démery and D.S. Dean, Drag forces in classical fields, Phys. Rev. Lett. 104, 080601, (2010).

[87] D.S. Dean and A.J. Gopinathan, Out-of-equilibrium behavior of Casimir-type fluctuation-induced forces for free classical fields, Phys. Rev. E. 81, 041126 (2010).

[88] D.S. Dean, R.R. Horgan, A. Naji and R. Podgornik, The effects of dielectric disorder on van der Waals interactions in slab geometries, Phys. Rev. E 81, 051117 (2010).

[89] M. Golzio, J.-M. Escoffre, T. Portet, C. Mauroy, J. Teissié, D.S. Dean and M.-P. Rols, Observations of the mechanism of electromediated DNA uptake – from vesicles to tissues, Curr. Gene Ther. 10, 256 (2010).

[90] V. Démery and D.S. Dean, Drag forces on inclusions in classical fields with dissipative dynamics, Eur. J. Phys E 32, 377 (2010).

[91] J. Sarabadani, A. Naji, D.S. Dean, R.R. Horgan and R. Podgornik, Non-monotonic fluctuation-induced interactions between dielectric slabs carrying charge disorder, J. Chem. Phys. 133, 174702 (2010).

[92] D.S. Dean, A. Naji and R. Podgornik, Sample-to-sample fluctuations of electrostatic forces generated by quenched charge disorder, Phys. Rev. E 83, 011102 (2011).

[93] J.-M. Escoffre, T. Portet, C. Favard, J. Teissié, D. S. Dean and M.-P. Rols, Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery, Biochim. Biophys. Acta 1808, 1534 (2011).

[94] D.S. Dean and V. Démery, Diffusion of active tracers in fluctuating fields, J. Phys: Condens. Matter 23, 234114 (2011).

[95] T. Portet, C. Favard, J. Teissié, D.S. Dean and M.-P. Rols, Insights into the mechanisms of electromediated gene delivery and application to the loading of giant vesicles with negatively charged macromolecules, Soft Matter 7, 3872 (2011).

[96] V. Démery and D.S. Dean, Perturbative path integral study of active and passive tracer diffusion in fluctuating fields, Phys. Rev. E 84, 011148 (2011).

[97] V. Démery and D.S. Dean, Thermal Casimir drag in fluctuating classical fields, Phys. Rev. E 84, 010103(R) (2011).

[98] D. Boyer and D.S. Dean, On the distribution of estimators of diffusion constants for Brownian motion, J. Phys. A: Math. Theor. 44, 335003 (2011).

[99] V. Démery, D.S. Dean, T.C. Hammant, R.R. Horgan and R. Podgornik, Overscreening in 1D lattice Coulomb gas model of ionic liquids, Europhys. Lett. 97, 28004 (2012).

[100] D.S. Dean, V. Démery, A. Parsegian and R. Podgornik, Out of equilibrum relaxation of the thermal Casimir effect in a model polarizable material, Phys. Rev. E 85, 031108 (2012).

[101] D.S. Dean and R. Podgornik, Ordering of anisotropic polarizable polymer chains on the full many- body level, J. Chem. Phys. 136, 154905 (2012).

[102] A. Naji, J. Sarabadani, D.S. Dean and R. Podgornik, Sample to sample torque fluctuations in a system of coaxial randomly charged surfaces, Eur. Phys. J. E 35, 24 (2012).

[103] D. Boyer, D.S. Dean, C. Mejia-Monasterio and G. Oshanin, Optimal estimates of the diffusion coefficient of a single Brownian trajectory, Phys. Rev. E 85, 031136 (2012).

[104] V. Démery, D.S.Dean, T.C. Hammant, R.R. Horgan and R. Podgornik, The one dimensional Coulomb lattice fluid capacitor, J. Chem. Phys. 137, 064901 (2012).

[105] D.S. Dean, T.C. Hammant, R.R. Horgan, A. Naji and R. Podgornik, Wrapping transition and wrapping- mediated interactions for discrete binding along an elastic filament: an exact solution, J. Chem. Phys. 137, 144904 (2012).

[106] D.S. Dean, Non-equilibrium fluctuation induced interactions, Phys. Scr. 86, 058502 (2012). [107] V. Démery, D.S. Dean and R. Podgornik, Electrostatic interactions mediated by polarizable counterions: weak and

 

[107] V. Démery, D.S. Dean and R. Podgornik, Electrostatic interactions mediated by polarizablecounterions: weak and strong couplinglimits, J. Chem. Phys. 137, 17903 (2012)

[108] T. Portet. C. Mauroy, V. Démery, T. Houles, J.-M. Escoffre, D.S. Dean and M.-P. Rols, Destabilizinggiantvesicleswithelectricfields: an overview of current applications, J. Memb. Biol. 245, 555 (2012)

[109]  D. Boyer, D.S. Dean, C. Meja-Monasterio and G. Oshanin, Optimal fits of diffuson constants from single  time data points of Browniantrajectories, Phys. Rev. E 86 060101(R) (2012).

[110] D.S. Dean, V.A. Parsegian and R. Podgornik, Fluctuation of thermal van de Waals forces due to dipole  fluctuations, Phys. Rev. A 87, 032111 (2013).

[111] D. Boyer, D.S. Dean, C. Meja-Monasterio and G. Oshanin,Optimalleast-squaresestimators of the  diffusion constant from a single Browniantrajectory, Eur. Phys. J. SpecialTopics 216, 57 (2013).

[112] D. Boyer, D.S. Dean, C. Meja-Monasterio and G. Oshanin, Distribution of the least-squaresestimators of a single Browniantrajectory diffusion coefficient, J. Stat. Mech. P04017 (2013).

[113] D. Boyer, D.S. Dean, C. Meja-Monasterio and G. Oshanin, On ergodic least squares estimators of the            generalized diffusion constant for fractionalBrownian motion, Phys. Rev. E 87, 030103(R) (2013).

[114] D.S. Dean and R. Podgornik, Relaxation of the thermal Casimir force between net neutral plates containingBrownian charges}, Phys. Rev. E 89, 032117 (2014).

[115] D.S. Dean and G. Oshanin, Approach to asymptotically diffusive behavior for Brownian particles in periodic potentials: Extracting information from transients, Phys. Rev. E 90, 022112 (2014).

[116] D.S. Dean, S. Gupta, G. Oshanin, A. Rosso and G. Schehr, Diffusion in periodic, correlated random forcing landscapes, J. Phys. A 47, 372001 (2014).

[117] D.S. Dean and T. Guérin, Approach to asymptotically diffusive behavior for Brownian particles in media with periodic diffusivities, Phys. Rev. E 90, 062114 (2014).

[118] D.S. Dean, V.A. Parsegian and R. Podgornik, Fluctuation mediated interactions due to rigidity mismatch and their effect on miscibility of lipid mixtures in multicomponent membranes, J. Phys.: Condens. Matter 27, 214004 (2015).

[119] D.S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Finite temperature free fermions and the Kardar-Parisi- Zhang equation at finite time, Phys. Rev. Lett. 114, 110402 (2015).

[120] T. Guérin and D.S. Dean, Force-induced dispersion in heterogeneous media, Phys. Rev. Lett. 115, 020601 (2015).

[121] B.-S. Lu, D.S. Dean, and R. Podgornik, Out of equilibrium thermal Casimir effect between Brownian conducting plates, Europhys. Lett. 112, 20001 (2015).

[122] T. Guérin and D.S. Dean, Kubo formulas for effective transport and dispersion in heterogeneous periodic nonequilibrium systems, Phys. Rev. E 92, 062103 (2015).

[123] D.S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Universal ground state properties of free fermions in a ddimensional trap, Europhys. Lett. 112, 60001 (2015).

[124] V. Démery, R. Monsarrat, D.S. Dean and R. Podgornik, Phase diagram of a bulk 1d lattice Coulomb gas, Europhys. Lett. 113, 18008 (2016).

[125] V. Démery and D.S. Dean, The conductivity of strong electrolytes from stochastic density functional theory, J. Stat. Mech. 023106 (2016).

[126] D.S. Dean, B.-S. Lu, A.C. Maggs and R. Podgornik, Nonequilibrium tuning of the thermal Casimir effect, Phys. Rev. Lett. 116, 240602 (2016).

[127] D.S. Dean, A. Iorio, E. Marinari and G. Oshanin, Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai potential, Phys. Rev. E 94, 032231 (2016).

[128] D.S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Non-interacting fermions at finite temperature in a ddimensional trap: universal correlations, Phys. Rev. A 94, 063622 (2016).

[129] T. Guérin and D.S. Dean, Universal time dependent dispersion properties for a diffusion in a onedimensional critically tilted potential, Phys. Rev E 95, 012109 (2017).

[130] H.Soo, D.S. Dean and M. Kruger, Anharmonic particles; suppressing van der Waals forces by an external field, Phys. Rev. E 95 012151 (2017).

[131] D.S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr, Statistics of maximal distance and momentum of a trapped Fermi gas at low temperature, J. Stat. Mech. (2017).

[132] M. Kruger and D.S. Dean, A Gaussian theory for fluctuations in simple liquids, J. Chem. Phys. 146, 134507 (2017

Conférences internationales à comité de lecture et chapitres de livres:

Articles in books and proceedings  2002 – 2005   =  Faire un lien sur le pdf “engcvshortbdx-2.pdf »

[P1] L. Salomé. F. Daumas, N. Destainville, C. Millot, A. Lopez and D.S. Dean, Receptor diffusion restricted to domains without compartimentalization as determined by single particle tracking, Biophys J. 82, 194 (2002).

[P2] D.S. Dean and A. Lefèvre, The steady state of the tapped Ising model, in Challenges in Granular Physics, eds T. Halsey et A. Mehta, World Scientific (2003).

[P3] F. Daumas, N. Destainville, C. Millot, A. Lopez, D.S. Dean and L. Salomé, Interprotein interactions are responsible for the confined diffusion of a G-protein-coupled receptor at the cell surface, Biochemical Society Transactions 31, 1001 (2003).

[P4] D.S. Dean and A. Lefèvre, A possible experimental test of the thermodynamic approach to granular media in Unifying Concepts in Granular Media and Glasses, eds M. Nicodemi et al, Elsevier Science B.V. (2004).

[P5] S.N. Majumdar, D.S. Dean and P.L. Krapivsky, Understanding search trees via statistical physics in Proceedings of the 22nd IUPAP International Conference of Statistical Physics (STAT PHYS 22 ), Pramana (2005).

[P6] D.S. Dean, A. Naji, R.R. Horgan, J. Sarabadani and R. Podgornik, Coulomb interactions betweendisordered charge distributions, dans Electrostatics of Soft and DisorderedMatter, eds. D. S. Dean, J. Dobnikar, A. Naji and R. Podgornik, Pan StandfordPublishing (2014).

[P7] R.R. Horgan, D.S. Dean, V. Démery, T.C. Hammant, A. Naji and R. Podgornik, Aspects of one-dimensional Coulomb gases, dans Electrostatics of Soft and DisorderedMatter, eds. D. S. Dean, J. Dobnikar, A. Naji and R. Podgornik, Pan StandfordPublishing (2014).

 

Edition de livres

[1] Electrostatics of Soft and DisorderedMatter, eds. D.S. Dean, J. Dobnikar, A. Naji and R. Podgornik, Pan StandfordPublishing 2014.

Curriculum vitae

Curriculum vitae

– Octobre 1993- Octobre 1995: dans le cadre d’une bourse OTAN, Service de Physique de l’Etat Condensé, CEA, Saclay, France. Post-doc dans le groupe des théoriciens avec J.-P. Bouchaud.

– Octobre 1995- Octobre 1996: dans le cadre d’une bourse européenne, Dipartimento di Fisica, Universita di

Roma I, Italie. Postdoc dans le groupe des systèmes désordonnés de G. Parisi.

– Octobre 1996- Décembre 1997: dans le cadre d’une bourse européenne, Laboratoire de Physique Théorique, ENS, Paris, France. Post-doc dans le groupe de mécanique statistique de M. Mézard.

– Janvier 1998- Septembre 1998: dans le cadre d’un poste rose du CNRS. Division de Physique Théorique, Institut de Physique Nucléaire, Orsay. Post-doc dans le groupe de mécanique statistique.

– Septembre 1998 -Septembre 2006 : Professeur des Universités, 2ième Classe, Laboratoire de Physique Théorique, IRSAMC, Université Paul Sabatier, Toulouse.

– Septembre 2003 – Septembre 2004: en détachement au Department of AppliedMathematics and TheoreticalPhysics, University of Cambridge, et VisitingResearchFellow à Sidney Sussex College, Cambridge.

– Septembre 2006 -Décembre 2012 : Professeur des Universités 1ière Classe, Laboratoire de Physique Théorique, IRSAMC,  Université Paul Sabatier, Toulouse.

– Février 2007-2012 Membre junior de l’Institut Universitaire de France (IUF).

– Janvier 2012- présent : Professeur des Universités 1ière Classe, Laboratoire Ondes et Matière d’Aquitaine, Université Bordeaux 1, Talence.

-Septembre 2013-présent: Professeur des Universités  Classe Exceptionelle, Laboratoire Ondes et Matière d’Aquitaine, Université Bordeaux 1, Talence.

David DEAN - LOMA

David DEAN

Laboratoire Ondes et Matière d’aquitaine (LOMA)
351 cours de la libération
33405 Talence Cedex

Phone : + 33 (0)5 40 00 26 03
Fax : + 33 (0)5 40 00 69 70
E-mail:david.dean@u-bordeaux.fr